Articles | Volume 5, issue 1
https://doi.org/10.5194/gc-5-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-5-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How to get your message across: designing an impactful knowledge transfer plan in a European project
Sara Pasqualetto
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Thomas Jung
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
Institute of Environmental Physics, University of Bremen, Bremen, Germany
Related authors
Kirstin Werner and Sara Pasqualetto
Polarforschung, 89, 85–87, https://doi.org/10.5194/polf-89-85-2021, https://doi.org/10.5194/polf-89-85-2021, 2021
Short summary
Short summary
The IcePod is the podcast about polar science and the people. We will talk to scientists who went on board Polarstern, the German research icebreaker, for the biggest research expedition in the Arctic. It is produced in collaboration with the Alfred Wegener Institute and Radio Weser.TV, where the full episodes with music will be played at www.medialabnord.de/radio-livestream/. For dates check back with polarprediction@gmail.com.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
Geosci. Model Dev., 17, 529–543, https://doi.org/10.5194/gmd-17-529-2024, https://doi.org/10.5194/gmd-17-529-2024, 2024
Short summary
Short summary
Cost-reducing modeling strategies are applied to high-resolution simulations of the Southern Ocean in a changing climate. They are evaluated with respect to observations and traditional, lower-resolution modeling methods. The simulations effectively reproduce small-scale ocean flows seen in satellite data and are largely consistent with traditional model simulations after 4 °C of warming. Small-scale flows are found to intensify near bathymetric features and to become more variable.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Dirk Barbi, Nadine Wieters, Paul Gierz, Miguel Andrés-Martínez, Deniz Ural, Fatemeh Chegini, Sara Khosravi, and Luisa Cristini
Geosci. Model Dev., 14, 4051–4067, https://doi.org/10.5194/gmd-14-4051-2021, https://doi.org/10.5194/gmd-14-4051-2021, 2021
Kirstin Werner and Sara Pasqualetto
Polarforschung, 89, 85–87, https://doi.org/10.5194/polf-89-85-2021, https://doi.org/10.5194/polf-89-85-2021, 2021
Short summary
Short summary
The IcePod is the podcast about polar science and the people. We will talk to scientists who went on board Polarstern, the German research icebreaker, for the biggest research expedition in the Arctic. It is produced in collaboration with the Alfred Wegener Institute and Radio Weser.TV, where the full episodes with music will be played at www.medialabnord.de/radio-livestream/. For dates check back with polarprediction@gmail.com.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Kirstin Werner, Yulia Zaika, Alexey K. Pavlov, Sven Lidström, Allen Pope, Renuka Badhe, Marlen Brückner, and Luisa Cristini
Adv. Geosci., 46, 25–43, https://doi.org/10.5194/adgeo-46-25-2019, https://doi.org/10.5194/adgeo-46-25-2019, 2019
Short summary
Short summary
Authors describe basic challenges of project and community management in polar sciences, identified through survey responses in addition to the authors’ own variou professional experiences. Four overarching themes were identified: international cooperation, interdisciplinarity, infrastructure, and community management. Case studies and survey results are discussed with the conclusive goal to provide recommendations on how reach the full potential in polar science project and community management
Luisa Cristini and Sylvia Walter
Adv. Geosci., 46, 21–23, https://doi.org/10.5194/adgeo-46-21-2019, https://doi.org/10.5194/adgeo-46-21-2019, 2019
Doug M. Smith, James A. Screen, Clara Deser, Judah Cohen, John C. Fyfe, Javier García-Serrano, Thomas Jung, Vladimir Kattsov, Daniela Matei, Rym Msadek, Yannick Peings, Michael Sigmond, Jinro Ukita, Jin-Ho Yoon, and Xiangdong Zhang
Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, https://doi.org/10.5194/gmd-12-1139-2019, 2019
Short summary
Short summary
The Polar Amplification Model Intercomparison Project (PAMIP) is an endorsed contribution to the sixth Coupled Model Intercomparison Project (CMIP6). It will investigate the causes and global consequences of polar amplification through coordinated multi-model numerical experiments. This paper documents the experimental protocol.
Nikolay V. Koldunov and Luisa Cristini
Adv. Geosci., 45, 295–303, https://doi.org/10.5194/adgeo-45-295-2018, https://doi.org/10.5194/adgeo-45-295-2018, 2018
Short summary
Short summary
We believe that project managers can benefit from using programming languages in their work. In this paper we show several simple examples of how python programming language can be used for some of the basic text manipulation tasks, as well as describe more complicated test cases using a HORIZON 2020 type European project as an example.
Qiang Wang, Claudia Wekerle, Sergey Danilov, Xuezhu Wang, and Thomas Jung
Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, https://doi.org/10.5194/gmd-11-1229-2018, 2018
Short summary
Short summary
For developing a system for Arctic research, we evaluate the Arctic Ocean simulated by FESOM. We use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer. The high resolution also improves the ocean surface circulation, mainly through a better representation of the Canadian Arctic Archipelago.
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Short summary
Numerical models of global ocean circulation are used to learn about future climate. The ocean circulation is characterized by processes on different spatial scales which are still beyond the reach of present computers. We describe a new model setup that allows one to vary a model's spatial resolution and hence focus the computational power on regional dynamics, reaching a better description of local processes in areas of interest.
Qinghua Yang, Martin Losch, Svetlana N. Losa, Thomas Jung, Lars Nerger, and Thomas Lavergne
The Cryosphere, 10, 761–774, https://doi.org/10.5194/tc-10-761-2016, https://doi.org/10.5194/tc-10-761-2016, 2016
Short summary
Short summary
We assimilate the summer SICCI sea ice concentration data with an ensemble-based Kalman Filter. Comparing with the approach using a constant data uncertainty, the sea ice concentration estimates are further improved when the SICCI-provided uncertainty are taken into account, but the sea ice thickness cannot be improved. We find the data assimilation system cannot give a reasonable ensemble spread of sea ice concentration and thickness if the provided uncertainty are directly used.
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
Short summary
Unstructured meshes allow multi-resolution modeling of ocean dynamics. Sea ice models formulated on unstructured meshes are a necessary component of ocean models intended for climate studies. This work presents a description of a finite-element sea ice model which is used as a component of a finite-element sea ice ocean circulation model. The principles underlying its design can be of interest to other groups pursuing ocean modelling on unstructured meshes.
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter
Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, https://doi.org/10.5194/gmd-7-663-2014, 2014
Related subject area
Subject: Geoscience engagement | Keyword: Public communication of science
Rocks Really Rock: electronic field trips via Web Google Earth can generate positive impacts in attitudes toward Earth sciences in middle- and high-school students
A spectrum of geoscience communication: from dissemination to participation
Understanding representations of uncertainty, an eye-tracking study – Part 1: The effect of anchoring
Understanding representations of uncertainty, an eye-tracking study – Part 2: The effect of expertise
GC Insights: Nature stripes for raising engagement with biodiversity loss
Exploring TikTok as a promising platform for geoscience communication
Magnetic to the Core – communicating palaeomagnetism with hands-on activities
Communicating uncertainties in spatial predictions of grain micronutrient concentration
The Met Office Weather Game: investigating how different methods for presenting probabilistic weather forecasts influence decision-making
The takeover of science communication: how science lost its leading role in the public discourse on carbon capture and storage research in daily newspapers in Germany
Building bridges between experts and the public: a comparison of two-way communication formats for flooding and air pollution risk
Carolina Ortiz-Guerrero and Jamie Loizzo
Geosci. Commun., 7, 101–119, https://doi.org/10.5194/gc-7-101-2024, https://doi.org/10.5194/gc-7-101-2024, 2024
Short summary
Short summary
This paper tackles K-12 Earth science (ES) education challenges, introducing the Rocks Really Rock electronic field trip. Utilizing multimedia and storytelling via Web Google Earth shows a significant positive shift in attitudes towards geology, careers, and literacy. Findings endorse EFT effectiveness, supporting dissemination in schools and homeschooling to enhance ES education.
Sam Illingworth
Geosci. Commun., 6, 131–139, https://doi.org/10.5194/gc-6-131-2023, https://doi.org/10.5194/gc-6-131-2023, 2023
Short summary
Short summary
In this article, I explore the various ways the geosciences can be communicated to a wider audience. I focus on creative methods that range from sharing information to involving the public in the research process. By using examples from my own work and the wider literature, I demonstrate how these approaches can engage diverse communities and promote greater recognition for geoscience communication.
Kelsey J. Mulder, Louis Williams, Matthew Lickiss, Alison Black, Andrew Charlton-Perez, Rachel McCloy, and Eugene McSorley
Geosci. Commun., 6, 97–110, https://doi.org/10.5194/gc-6-97-2023, https://doi.org/10.5194/gc-6-97-2023, 2023
Short summary
Short summary
It is vital that uncertainty in environmental forecasting is graphically presented to enable people to use and interpret it correctly. Using novel eye-tracking methods, we show that where people look and the decisions they make are both strongly influenced by construction of forecast representations common in presentations of environmental data. This suggests that forecasters should construct their presentations carefully so that they help people to extract important information more easily.
Louis Williams, Kelsey J. Mulder, Andrew Charlton-Perez, Matthew Lickiss, Alison Black, Rachel McCloy, Eugene McSorley, and Joe Young
Geosci. Commun., 6, 111–123, https://doi.org/10.5194/gc-6-111-2023, https://doi.org/10.5194/gc-6-111-2023, 2023
Short summary
Short summary
When constructing graphical environmental forecasts involving uncertainty, it is important to consider the background and expertise of end-users. Using novel eye-tracking methods, we show that where people look and the decisions they make are both strongly influenced by prior expertise and the graphical construction of forecast representations common in presentations of environmental data. We suggest that forecasters should construct their presentations carefully, bearing these factors in mind.
Miles Richardson
Geosci. Commun., 6, 11–14, https://doi.org/10.5194/gc-6-11-2023, https://doi.org/10.5194/gc-6-11-2023, 2023
Short summary
Short summary
There has also been a stark loss of wildlife since 1970, yet climate change receives far greater attention. The
warming stripeshave shown how simple graphics can engage broad audiences. The
nature stripesshow how the loss of wildlife and biodiversity can also be presented in a similar way for positive effects.
Emily E. Zawacki, Wendy Bohon, Scott Johnson, and Donna J. Charlevoix
Geosci. Commun., 5, 363–380, https://doi.org/10.5194/gc-5-363-2022, https://doi.org/10.5194/gc-5-363-2022, 2022
Short summary
Short summary
To determine the best strategies for geoscience communication on TikTok, we created a TikTok account called
Terra Explore. We produced 48 educational geoscience videos and evaluated each video’s performance. Our most-viewed videos received nearly all of their views from TikTok’s algorithmic recommendation feed, and the videos that received the most views were related to a recent newsworthy event (e.g., earthquake) or explained the geology of a recognizable area.
Annique van der Boon, Andrew J. Biggin, Greig A. Paterson, and Janine L. Kavanagh
Geosci. Commun., 5, 55–66, https://doi.org/10.5194/gc-5-55-2022, https://doi.org/10.5194/gc-5-55-2022, 2022
Short summary
Short summary
We present the Magnetic to the Core project, which communicated palaeomagnetism to members of the general public through hands-on experiments. The impact of the project was tested with an interactive quiz, which shows that this outreach event was successful in impacting visitors’ learning. We hope our Magnetic to the Core project can serve as an inspiration for other Earth science laboratories looking to engage a wide audience and measure the success and impact of their outreach activities.
Christopher Chagumaira, Joseph G. Chimungu, Dawd Gashu, Patson C. Nalivata, Martin R. Broadley, Alice E. Milne, and R. Murray Lark
Geosci. Commun., 4, 245–265, https://doi.org/10.5194/gc-4-245-2021, https://doi.org/10.5194/gc-4-245-2021, 2021
Short summary
Short summary
Our study is concerned with how the uncertainty in spatial information about environmental variables can be communicated to stakeholders who must use this information to make decisions. We tested five methods for communicating the uncertainty in spatial predictions by eliciting the opinions of end-users about the usefulness of the methods. End-users preferred methods based on the probability that concentrations are below or above a nutritionally significant threshold.
Elisabeth M. Stephens, David J. Spiegelhalter, Ken Mylne, and Mark Harrison
Geosci. Commun., 2, 101–116, https://doi.org/10.5194/gc-2-101-2019, https://doi.org/10.5194/gc-2-101-2019, 2019
Short summary
Short summary
The UK Met Office ran an online game to highlight the best methods of communicating uncertainty in their online forecasts and to widen engagement in probabilistic weather forecasting. The game used a randomized design to test different methods of presenting uncertainty and to enable participants to experience being
luckyor
unluckywhen the most likely scenario did not occur. Over 8000 people played the game; we found players made better decisions when provided with forecast uncertainty.
Simon Schneider
Geosci. Commun., 2, 69–82, https://doi.org/10.5194/gc-2-69-2019, https://doi.org/10.5194/gc-2-69-2019, 2019
Short summary
Short summary
CCS media coverage in Germany was dominated by other stakeholders than science itself. If science will remain a proactive element of science communication, new approaches for future science PR have be deduced. Among these is a more differentiated understanding of target audiences and regional concerns. Furthermore, science communication has to gain a better understanding of sociocultural contexts to become more effective and successful.
Maria Loroño-Leturiondo, Paul O'Hare, Simon J. Cook, Stephen R. Hoon, and Sam Illingworth
Geosci. Commun., 2, 39–53, https://doi.org/10.5194/gc-2-39-2019, https://doi.org/10.5194/gc-2-39-2019, 2019
Short summary
Short summary
Urban centres worldwide are adversely affected by flooding and air pollution. Effective communication between experts and citizens is key to understanding and limiting the impact of these hazards, as citizens have valuable knowledge based on their day-to-day experiences. In this study, we compare five different communication formats that can facilitate the required dialogue and explore the best ways and optimal circumstances in which these can be implemented.
Cited articles
APPLICATE (Advanced Prediction in Polar regions and beyond: modelling, observing system design and LInkages associated with a Changing Arctic climaTE): https://applicate-h2020.eu (last access: 18 March 2022), 2021. a
APPLICATE Repository: Advanced prediction in polar regions and beyond: Modelling, Observing System Design and linkages associated with arctic climate change, Zenodo, CERN, https://zenodo.org/communities/applicate/?page=1&size=20 (last access: 18 March 2022), 2018. a
Bauer, P., Sandu, I., Magnusson, L., Mladek, R., and Fuentes, M.: ECMWF global coupled atmosphere, ocean and sea-ice dataset for the Year of Polar Prediction 2017–2020, Scientific Data, 7, 427, https://doi.org/10.1038/s41597-020-00765-y, 2020. a
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. a
Bojovic, D., Terrado, M., Johannsson, H., Fugmann, G., and Cristini, L.: User Engagement Plan, Zenodo, https://doi.org/10.5281/zenodo.5035997, 2019. a
Bojovic, D., St. Clair, A. L., Christel, I., Terrado, M., Stanzel, P., Gonzalez, P., and Palin, E. J.: Engagement, involvement and empowerment: Three realms of a coproduction framework for climate services, Global Environ. Chang., 68, 102271, https://doi.org/10.1016/j.gloenvcha.2021.102271, 2021. a
Cristini, L. and Walter, S.: Preface: Implementing project management principles in geosciences, Adv. Geosci., 46, 21–23, https://doi.org/10.5194/adgeo-46-21-2019, 2019. a
Findler, F., Schönherr, N., Lozano, R., and Stacherl, B.: Assessing the Impacts of Higher Education Institutions on Sustainable Development—An Analysis of Tools and Indicators, Sustainability, 11, 59, https://doi.org/10.3390/su11010059, 2019. a, b
Fugmann, G., Schneider, A., Bojovic, D., Terrado, M., Johannsson, H., and Cristini, L.: Training Plan, Zenodo, https://doi.org/10.5281/zenodo.5036001, 2019. a
Gößling, H.: Welcome to Polar Prediction Matters, Helmholtz Blogs,
https://blogs.helmholtz.de/polarpredictionmatters/2017/09/welcome-to-polar-prediction-matters/ (last access: 7 February 2022), 2017. a
Hewitt, C. D., Stone, R. C., and Tait, A. B.: Improving the use of climate information in decision-making, Nat. Clim. Change, 7, 614–616, https://doi.org/10.1038/nclimate3378, 2017. a, b, c
Hill, B., Bradley, D., and Williams, E.: Evaluation of knowledge transfer; conceptual and practical problems of impact assessment of Farming Connect in Wales, J. Rural Stud., 49, 41–49, https://doi.org/10.1016/j.jrurstud.2016.11.003, 2017. a
Jensen, E.: The problems with science communication evaluation, Journal of Science Communication, 13, C04, https://doi.org/10.22323/2.13010304, 2014. a
Johannsson, H., Bojovic, D., Terrado, M., Cristini, L., and Pasqualetto, S.: Communication and Dissemination Plan, Zenodo, https://doi.org/10.5281/zenodo.5035988, 2019. a
Jung, T., Gordon, N. D., Bauer, P., Bromwich, D. H., Chevallier, M., Day, J. J., Dawson, J., Doblas-Reyes, F., Fairall, C., Goessling, H. F., Holland, M., Inoue, J., Iversen, T., Klebe, S., Lemke, P., Losch, M., Makshtas, A., Mills, B., Nurmi, P., Perovich, D., Reid, P., Renfrew, I. A., Smith, G., Svensson, G., Tolstykh, M., and Yang, Q.: Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales, B. Am. Meteorol. Soc., 97, 1631–1647, https://doi.org/10.1175/bams-d-14-00246.1, 2016. a
Jung, T., Day, J., and Cristini, L.: Clustering Plan, Zenodo, https://doi.org/10.5281/zenodo.5036011, 2019. a
Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., Docquier, D., Feltham, D., Massonnet, F., O'Farrell, S., Ponsoni, L., Rodriguez, J. M., Schroeder, D., Swart, N., Toyoda, T., Tsujino, H., Vancoppenolle, M., and Wyser, K.: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, 2021. a
Lawrence, H., Bormann, N., Sandu, I., Day, J., Farnan, J., and Bauer, P.: Use and impact of Arctic observations in the ECMWF Numerical Weather Prediction system, Q. J. Roy. Meteor. Soc., 145, 3432–3454, https://doi.org/10.1002/qj.3628, 2019. a
Lövbrand, E.: Co-producing European climate science and policy: a cautionary note on the making of useful knowledge, Sci. Publ. Policy, 38, 225–236, https://doi.org/10.3152/030234211X12924093660516, 2011. a
Morton, S.: Progressing research impact assessment: A ‘contributions’ approach, Res. Evaluat., 24, 405–419, https://doi.org/10.1093/reseval/rvv016, 2015. a, b
Notz, D. and SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020. a
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.
a
Octenjak, S., Bojović, D., Terrado, M., Cvijanović, I., Magnusson, L., and Vitolo, C.: Is Alaska Prepared For Extreme Wildfires?, https://blogs.helmholtz.de/polarpredictionmatters/2020/11/is-alaska-prepared-for-extreme-wildfires/, (last access: 7 February 2022), 2020. a
Ponsoni, L., Massonnet, F., Docquier, D., Van Achter, G., and Fichefet, T.: Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations, The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020, 2020. a
Ross, J.: Risks and Reward: Assessing the Ocean Risks Associated with a Reducing Greenland Ice Sheet, Helmholtz Blogs,
https://blogs.helmholtz.de/polarpredictionmatters/2020/05/risks-and-reward-assessing-the-ocean-risks-associated-with-
a-reducing-greenland-ice-sheet/
(last access: 7 February 2022), 2020. a
Rowe, N. and Ilic, D.: What impact do posters have on academic knowledge transfer? A pilot survey on author attitudes and experiences, BMC Med. Educ., 9, 71, https://doi.org/10.1186/1472-6920-9-71, 2009. a
Schneider, A. and Fugmann, G.: Assessment of early career researcher training activities, Zenodo, https://doi.org/10.5281/zenodo.4906338, 2020. a, b
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019. a, b
Terrado, M., Bojovic, D., Ponsoni, L., Massonnet, F., Sandu, I., Pasqualetto, S., and Jung, T.: Strategic placement of in-situ sampling sites to monitor Arctic sea ice, Zenodo, https://doi.org/10.5281/zenodo.4987352, 2021. a
Tummon, F., Day, J., and Svensson, G.: Training Early-Career Polar Weather and Climate Researchers, Eos, 99, https://doi.org/10.1029/2018eo103475, 2018. a
University of Cambridge: What is knowledge transfer?, https://www.cam.ac.uk/research/news/what-is-knowledge-transfer (last access: 29 June 2021), 2009. a
Upton, S., Vallance, P., and Goddard, J.: From outcomes to process: evidence for a new approach to research impact assessment, Res. Evaluat., 23, 352–365, https://doi.org/10.1093/reseval/rvu021, 2014. a
Short summary
Many projects in their reporting phase are required to provide a clear plan for evaluating the results of those efforts aimed at translating scientific results to a broader audience. This paper illustrates methodologies and strategies used in the framework of a European research project to assess the impact of knowledge transfer activities, both quantitatively and qualitatively, and provides recommendations and hints for developing a useful impact plan for scientific projects.
Many projects in their reporting phase are required to provide a clear plan for evaluating the...
Altmetrics
Final-revised paper
Preprint