Articles | Volume 4, issue 2
https://doi.org/10.5194/gc-4-189-2021
https://doi.org/10.5194/gc-4-189-2021
Research article
 | 
08 Apr 2021
Research article |  | 08 Apr 2021

Schools of all backgrounds can do physics research – on the accessibility and equity of the Physics Research in School Environments (PRiSE) approach to independent research projects

Martin O. Archer

Related authors

Investigation of the occurrence of significant deviations in the magnetopause location: Solar wind and foreshock effects
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956,https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
The Cluster spacecrafts' view of the motion of the high-latitude magnetopause
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024,https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
GC Insights: Space sector careers resources in the UK need a greater diversity of roles
Martin O. Archer, Cara L. Waters, Shafiat Dewan, Simon Foster, and Antonio Portas
Geosci. Commun., 5, 119–123, https://doi.org/10.5194/gc-5-119-2022,https://doi.org/10.5194/gc-5-119-2022, 2022
Short summary
Evaluating participants' experience of extended interaction with cutting-edge physics research through the PRiSE “research in schools” programme
Martin O. Archer, Jennifer DeWitt, Charlotte Thorley, and Olivia Keenan
Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021,https://doi.org/10.5194/gc-4-147-2021, 2021
Short summary
“Thanks for helping me find my enthusiasm for physics”: the lasting impacts “research in schools” projects can have on students, teachers, and schools
Martin O. Archer and Jennifer DeWitt
Geosci. Commun., 4, 169–188, https://doi.org/10.5194/gc-4-169-2021,https://doi.org/10.5194/gc-4-169-2021, 2021
Short summary

Related subject area

Subject: Geoscience education | Keyword: Pedagogy
Arctic Tectonics and Volcanism: a multi-scale, multi-disciplinary educational approach
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024,https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
The weather today rocks or sucks for my tree: exploring the understanding of climate impacts on forests at high school level through tweets
Thomas Mölg, Jan C. Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun., 7, 215–225, https://doi.org/10.5194/gc-7-215-2024,https://doi.org/10.5194/gc-7-215-2024, 2024
Short summary
Climate Denial – the Antithesis of Climate Education: A Review
Gerald Kutney
EGUsphere, https://doi.org/10.5194/egusphere-2024-339,https://doi.org/10.5194/egusphere-2024-339, 2024
Short summary
The Rock Garden: a preliminary assessment of how campus-based field skills training impacts student confidence in real-world fieldwork
Thomas W. Wong Hearing, Stijn Dewaele, Stijn Albers, Julie De Weirdt, and Marc De Batist
Geosci. Commun., 7, 17–33, https://doi.org/10.5194/gc-7-17-2024,https://doi.org/10.5194/gc-7-17-2024, 2024
Short summary
GC Insights: The crystal structures behind mineral properties – a case study of using TotBlocks in an undergraduate optical mineralogy lab
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023,https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary

Cited articles

Archer, M. O.: So you're looking to run a research in schools project? Practical tips from the evaluation of a pilot programme, Tech. rep., SEPnet, https://doi.org/10.13140/RG.2.2.25674.06088, 2017. a
Archer, M. O. and DeWitt, J.: “Thanks for helping me find my enthusiasm for physics”: the lasting impacts “research in schools” projects can have on students, teachers, and schools, Geosci. Commun., 4, 169–188, https://doi.org/10.5194/gc-4-169-2021, 2021. a
Archer, M. O., DeWitt, J., Thorley, C., and Keenan, O.: Evaluating participants' experience of extended interaction with cutting-edge physics research through the PRiSE “research in schools” programme, Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021, 2021. a, b, c, d, e
Bennett, J., Dunlop, L., Knox, K. J., Reiss, M. J., and Torrance Jenkins, R.: A Rapid Evidence Review of Practical Independent Research Projects in Science, Tech. rep., Wellcome Trust, London, 2016. a, b, c, d
Bennett, J., Dunlop, L., Know, K. J., Reiss, M. J., and Torrance Jenkins, R.: Practical independent research projects in science: a synthesis and evaluation of the evidence of impact on high school students, Int. J. Sci. Educ., 40, 1755–1773, https://doi.org/10.1080/09500693.2018.1511936, 2018. a, b, c, d
Short summary
An evaluation of the accessibility and equity of a programme of independent research projects shows that, with the right support from both teachers and active researchers, schools' ability to succeed at undertaking cutting-edge research appears independent of typical societal inequalities.
Altmetrics
Final-revised paper
Preprint