Articles | Volume 5, issue 2
https://doi.org/10.5194/gc-5-101-2022
https://doi.org/10.5194/gc-5-101-2022
Research article
 | 
07 Apr 2022
Research article |  | 07 Apr 2022

A remote field course implementing high-resolution topography acquisition with geomorphic applications

Sharon Bywater-Reyes and Beth Pratt-Sitaula

Related authors

The influence of a vegetated bar on channel-bend flow dynamics
Sharon Bywater-Reyes, Rebecca M. Diehl, and Andrew C. Wilcox
Earth Surf. Dynam., 6, 487–503, https://doi.org/10.5194/esurf-6-487-2018,https://doi.org/10.5194/esurf-6-487-2018, 2018
Short summary

Related subject area

Subject: Geoscience education | Keyword: Pedagogy
The Rock Garden: a preliminary assessment of how campus-based field skills training impacts student confidence in real-world fieldwork
Thomas W. Wong Hearing, Stijn Dewaele, Stijn Albers, Julie De Weirdt, and Marc De Batist
Geosci. Commun., 7, 17–33, https://doi.org/10.5194/gc-7-17-2024,https://doi.org/10.5194/gc-7-17-2024, 2024
Short summary
The weather today rocks or sucks for my tree: Exploring the understanding of climate impacts on forests at high school level through tweets
Thomas Mölg, Jan Christoph Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2023-5,https://doi.org/10.5194/gc-2023-5, 2023
Revised manuscript accepted for GC
Short summary
GC Insights: The crystal structures behind mineral properties – a case study of using TotBlocks in an undergraduate optical mineralogy lab
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023,https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary
Building confidence in STEM students through breaking (unseen) barriers
Philip J. Heron and Jamie A. Williams
Geosci. Commun., 5, 355–361, https://doi.org/10.5194/gc-5-355-2022,https://doi.org/10.5194/gc-5-355-2022, 2022
Short summary
The potential for using video games to teach geoscience: learning about the geology and geomorphology of Hokkaido (Japan) from playing Pokémon Legends: Arceus
Edward G. McGowan and Lewis J. Alcott
Geosci. Commun., 5, 325–337, https://doi.org/10.5194/gc-5-325-2022,https://doi.org/10.5194/gc-5-325-2022, 2022
Short summary

Cited articles

Abbott, D.: Disrupting the “whiteness” of fieldwork in geography, Singap. J. Trop. Geogr., 27, 326–341, https://doi.org/10.1111/j.1467-9493.2006.00265.x, 2006. 
Abeyta, A., Fernandes, A. M., Mahon, R. C., and Swanson, T.: The true cost of field education is a barrier to diversifying geosciences, Earth ArXiv, 12 [online], https://eartharxiv.org/repository/view/2091/ (last access: 13 August 2021), 2020. 
Ali, W.: Online and Remote Learning in Higher Education Institutes: A Necessity in light of COVID-19 Pandemic, High. Educ. Stud., 10, 16, https://doi.org/10.5539/hes.v10n3p16, 2020. 
Anderson, S. W., Anderson, S. P., and Anderson, R. S.: Exhumation by debris flows in the 2013 Colorado Front Range storm, Geology, 43, 391–394, https://doi.org/10.1130/G36507.1, 2015. 
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 69, 163–178, https://doi.org/10.1016/j.jsg.2014.10.007, 2014. 
Download
Short summary
This paper outlines educational materials appropriate to teach upper division or graduate-level geoscience students how to produce and interpret high-resolution topography data. In a remote implementation, students were able to independently generate high-resolution topographic data products that can be used for interpreting hazards such as landsliding and flooding. Students met course learning outcomes while learning marketable skills used within environmental jobs or research settings.
Altmetrics
Final-revised paper
Preprint