Articles | Volume 4, issue 2
https://doi.org/10.5194/gc-4-245-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-4-245-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Communicating uncertainties in spatial predictions of grain micronutrient concentration
Christopher Chagumaira
CORRESPONDING AUTHOR
Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Crop and Soil Sciences Department, Bunda College, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
Joseph G. Chimungu
Crop and Soil Sciences Department, Bunda College, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
Dawd Gashu
Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
Patson C. Nalivata
Crop and Soil Sciences Department, Bunda College, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
Martin R. Broadley
Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
Alice E. Milne
Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
R. Murray Lark
Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
Related authors
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Alice E. Milne, and R. Murray Lark
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2023-1, https://doi.org/10.5194/gc-2023-1, 2023
Preprint under review for GC
Short summary
Short summary
Our study is concerned with how uncertainty in spatial information about environmental variables can be communicated to stakeholders to make decisions about sampling whilst considering the trade-off between sample effort and reducing uncertainty. We tested four approaches that relate sampling density and uncertainty by eliciting the opinions of end-users. End-users preferred the method not direct link to decision-making. More work is needed to develop and elucidate decision-specific approaches.
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583, https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Short summary
Our study examines different quantitative methods to predict concentrations of micronutrients in the soil from field samples. However, we emphasize the concerns of stakeholders, who use such information to make decisions, in this case in relation to the study and management of micronutrient deficiency risk in the human population. We propose a framework to think about these concerns then compare common approaches for digital soil mapping within this framework.
Nalumino L. Namwanyi, Maurice J. Hutton, Ikabongo Mukumbuta, Lydia M. Chabala, Clarence Chongo, Stalin Sichinga, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2024-315, https://doi.org/10.5194/egusphere-2024-315, 2024
Short summary
Short summary
We examined historical sources for the Ecological Survey of Zambia, 1932–1943. This found how normal erosion gave rise to soil variation in the upper Zambezi valley which was expressed in vegetation patterns which African farmers interpreted to select sites for cultivation and traditional production systems. The survey challenged colonial assumptions about traditional practices. We identify lessons for modern-day approaches to traditional agricultural knowledge in Africa.
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Alice E. Milne, and R. Murray Lark
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2023-1, https://doi.org/10.5194/gc-2023-1, 2023
Preprint under review for GC
Short summary
Short summary
Our study is concerned with how uncertainty in spatial information about environmental variables can be communicated to stakeholders to make decisions about sampling whilst considering the trade-off between sample effort and reducing uncertainty. We tested four approaches that relate sampling density and uncertainty by eliciting the opinions of end-users. End-users preferred the method not direct link to decision-making. More work is needed to develop and elucidate decision-specific approaches.
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583, https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Short summary
Our study examines different quantitative methods to predict concentrations of micronutrients in the soil from field samples. However, we emphasize the concerns of stakeholders, who use such information to make decisions, in this case in relation to the study and management of micronutrient deficiency risk in the human population. We propose a framework to think about these concerns then compare common approaches for digital soil mapping within this framework.
Abdul-Wahab Mossa, Dawd Gashu, Martin R. Broadley, Sarah J. Dunham, Steve P. McGrath, Elizabeth H. Bailey, and Scott D. Young
SOIL, 7, 255–268, https://doi.org/10.5194/soil-7-255-2021, https://doi.org/10.5194/soil-7-255-2021, 2021
Short summary
Short summary
Zinc deficiency is a widespread nutritional problem in human populations, especially in sub-Saharan Africa (SSA). Crop Zn depends in part on soil Zn. The Zn status of soils from the Amahara region, Ethiopia, was quantified by measuring pseudo-total, available, soluble and isotopically exchangeable Zn, and soil geochemical properties were assessed. Widespread phyto-available Zn deficiency was observed. The results could be used to improve agronomic interventions to tackle Zn deficiency in SSA.
Related subject area
Subject: Geoscience engagement | Keyword: Public communication of science
Rocks Really Rock: electronic field trips via Web Google Earth can generate positive impacts in attitudes toward Earth sciences in middle- and high-school students
A spectrum of geoscience communication: from dissemination to participation
Understanding representations of uncertainty, an eye-tracking study – Part 1: The effect of anchoring
Understanding representations of uncertainty, an eye-tracking study – Part 2: The effect of expertise
GC Insights: Nature stripes for raising engagement with biodiversity loss
Exploring TikTok as a promising platform for geoscience communication
How to get your message across: designing an impactful knowledge transfer plan in a European project
Magnetic to the Core – communicating palaeomagnetism with hands-on activities
The Met Office Weather Game: investigating how different methods for presenting probabilistic weather forecasts influence decision-making
The takeover of science communication: how science lost its leading role in the public discourse on carbon capture and storage research in daily newspapers in Germany
Building bridges between experts and the public: a comparison of two-way communication formats for flooding and air pollution risk
Carolina Ortiz-Guerrero and Jamie Loizzo
Geosci. Commun., 7, 101–119, https://doi.org/10.5194/gc-7-101-2024, https://doi.org/10.5194/gc-7-101-2024, 2024
Short summary
Short summary
This paper tackles K-12 Earth science (ES) education challenges, introducing the Rocks Really Rock electronic field trip. Utilizing multimedia and storytelling via Web Google Earth shows a significant positive shift in attitudes towards geology, careers, and literacy. Findings endorse EFT effectiveness, supporting dissemination in schools and homeschooling to enhance ES education.
Sam Illingworth
Geosci. Commun., 6, 131–139, https://doi.org/10.5194/gc-6-131-2023, https://doi.org/10.5194/gc-6-131-2023, 2023
Short summary
Short summary
In this article, I explore the various ways the geosciences can be communicated to a wider audience. I focus on creative methods that range from sharing information to involving the public in the research process. By using examples from my own work and the wider literature, I demonstrate how these approaches can engage diverse communities and promote greater recognition for geoscience communication.
Kelsey J. Mulder, Louis Williams, Matthew Lickiss, Alison Black, Andrew Charlton-Perez, Rachel McCloy, and Eugene McSorley
Geosci. Commun., 6, 97–110, https://doi.org/10.5194/gc-6-97-2023, https://doi.org/10.5194/gc-6-97-2023, 2023
Short summary
Short summary
It is vital that uncertainty in environmental forecasting is graphically presented to enable people to use and interpret it correctly. Using novel eye-tracking methods, we show that where people look and the decisions they make are both strongly influenced by construction of forecast representations common in presentations of environmental data. This suggests that forecasters should construct their presentations carefully so that they help people to extract important information more easily.
Louis Williams, Kelsey J. Mulder, Andrew Charlton-Perez, Matthew Lickiss, Alison Black, Rachel McCloy, Eugene McSorley, and Joe Young
Geosci. Commun., 6, 111–123, https://doi.org/10.5194/gc-6-111-2023, https://doi.org/10.5194/gc-6-111-2023, 2023
Short summary
Short summary
When constructing graphical environmental forecasts involving uncertainty, it is important to consider the background and expertise of end-users. Using novel eye-tracking methods, we show that where people look and the decisions they make are both strongly influenced by prior expertise and the graphical construction of forecast representations common in presentations of environmental data. We suggest that forecasters should construct their presentations carefully, bearing these factors in mind.
Miles Richardson
Geosci. Commun., 6, 11–14, https://doi.org/10.5194/gc-6-11-2023, https://doi.org/10.5194/gc-6-11-2023, 2023
Short summary
Short summary
There has also been a stark loss of wildlife since 1970, yet climate change receives far greater attention. The
warming stripeshave shown how simple graphics can engage broad audiences. The
nature stripesshow how the loss of wildlife and biodiversity can also be presented in a similar way for positive effects.
Emily E. Zawacki, Wendy Bohon, Scott Johnson, and Donna J. Charlevoix
Geosci. Commun., 5, 363–380, https://doi.org/10.5194/gc-5-363-2022, https://doi.org/10.5194/gc-5-363-2022, 2022
Short summary
Short summary
To determine the best strategies for geoscience communication on TikTok, we created a TikTok account called
Terra Explore. We produced 48 educational geoscience videos and evaluated each video’s performance. Our most-viewed videos received nearly all of their views from TikTok’s algorithmic recommendation feed, and the videos that received the most views were related to a recent newsworthy event (e.g., earthquake) or explained the geology of a recognizable area.
Sara Pasqualetto, Luisa Cristini, and Thomas Jung
Geosci. Commun., 5, 87–100, https://doi.org/10.5194/gc-5-87-2022, https://doi.org/10.5194/gc-5-87-2022, 2022
Short summary
Short summary
Many projects in their reporting phase are required to provide a clear plan for evaluating the results of those efforts aimed at translating scientific results to a broader audience. This paper illustrates methodologies and strategies used in the framework of a European research project to assess the impact of knowledge transfer activities, both quantitatively and qualitatively, and provides recommendations and hints for developing a useful impact plan for scientific projects.
Annique van der Boon, Andrew J. Biggin, Greig A. Paterson, and Janine L. Kavanagh
Geosci. Commun., 5, 55–66, https://doi.org/10.5194/gc-5-55-2022, https://doi.org/10.5194/gc-5-55-2022, 2022
Short summary
Short summary
We present the Magnetic to the Core project, which communicated palaeomagnetism to members of the general public through hands-on experiments. The impact of the project was tested with an interactive quiz, which shows that this outreach event was successful in impacting visitors’ learning. We hope our Magnetic to the Core project can serve as an inspiration for other Earth science laboratories looking to engage a wide audience and measure the success and impact of their outreach activities.
Elisabeth M. Stephens, David J. Spiegelhalter, Ken Mylne, and Mark Harrison
Geosci. Commun., 2, 101–116, https://doi.org/10.5194/gc-2-101-2019, https://doi.org/10.5194/gc-2-101-2019, 2019
Short summary
Short summary
The UK Met Office ran an online game to highlight the best methods of communicating uncertainty in their online forecasts and to widen engagement in probabilistic weather forecasting. The game used a randomized design to test different methods of presenting uncertainty and to enable participants to experience being
luckyor
unluckywhen the most likely scenario did not occur. Over 8000 people played the game; we found players made better decisions when provided with forecast uncertainty.
Simon Schneider
Geosci. Commun., 2, 69–82, https://doi.org/10.5194/gc-2-69-2019, https://doi.org/10.5194/gc-2-69-2019, 2019
Short summary
Short summary
CCS media coverage in Germany was dominated by other stakeholders than science itself. If science will remain a proactive element of science communication, new approaches for future science PR have be deduced. Among these is a more differentiated understanding of target audiences and regional concerns. Furthermore, science communication has to gain a better understanding of sociocultural contexts to become more effective and successful.
Maria Loroño-Leturiondo, Paul O'Hare, Simon J. Cook, Stephen R. Hoon, and Sam Illingworth
Geosci. Commun., 2, 39–53, https://doi.org/10.5194/gc-2-39-2019, https://doi.org/10.5194/gc-2-39-2019, 2019
Short summary
Short summary
Urban centres worldwide are adversely affected by flooding and air pollution. Effective communication between experts and citizens is key to understanding and limiting the impact of these hazards, as citizens have valuable knowledge based on their day-to-day experiences. In this study, we compare five different communication formats that can facilitate the required dialogue and explore the best ways and optimal circumstances in which these can be implemented.
Cited articles
AfSIS: New cropland and rural settlement maps of Africa, available at: http://africasoils.net/2015/06/07/new-cropland-and-rural-settlement-maps-of-africa (last access: 25 April 2020), 2015
Belay, A., Joy, E., Chagumaira, C., Zerfu, D., Ander, E. L., Young, S. D., Bailey, E. H., Lark, R. M., Broadley, M. R., and Gashu, D.: Selenium Deficiency Is Widespread and Spatially Dependent in Ethiopia, Nutrients, 12, 1565, https://doi.org/10.3390/nu12061565, 2020.
Beven, K., Lamb, R., Leedal, D., and Hunter, N.: Communicating uncertainty in flood inundation mapping: a case study, Int. J. River Basin Manage., 13, 285–295, https://doi.org/10.1080/15715124.2014.917318, 2015.
Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S. P., Meacham, M. C., Norman, K., Mowat, H., Scott, P., Stroud, J. L., Tovey, M., Tucker, M., White, P. J., Young, S. D., and Zhao, F. J.: Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation, Plant Soil, 332, 5–18, https://doi.org/10.1007/s11104-009-0234-4, 2010.
Budescu, D. V., Broomell, S. B., and Han, P.: Improving communication of uncertainty in the reports of Intergovernmental Panel on Climate Change, Psychol. Sci., 20, 299–308, 2009.
Chagumaira, C., Murray L. R., and Milne, A. E.: Data and Code for Chagumaira et al. 2021 [Dataset], figshare, https://doi.org/10.6084/m9.figshare.14465736.v2, 2021.
Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., Lammel, J., and Broadley, M. R.: Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi, Sci. Rep., 1, 72, https://doi.org/10.1038/srep00072, 2011.
Christensen, R.: Log-Linear Models and Logistic Regression, Springer,
Springer-Verlag, New York, 1997.
Diggle, P. and Ribeiro, P. J.: Model-based geostatistics, Springer-Verlag, New York, 2010.
Fairweather-Tait, S. J., Bao, Y. P., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., and Hurst, R.: Selenium in Human Health and Disease, Antioxid. Redox Sign., 14, 1337–1383, https://doi.org/10.1089/ars.2010.3275, 2011.
Gashu, D., Lark, R., Milne, A., Amede, T., Bailey, E., Chagumaira, C., Dunham, S., Gameda, S., Kumssa, D., Mossa, A., Walsh, M., Wilson, L., Young, S., Ander, E., Broadley, M., Joy, E., and McGrath, S.: Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region, Ethiopia, Sci. Total Environ., 733, 139231, https://doi.org/10.1016/j.scitotenv.2020.139231, 2020.
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford University Press, 1997.
Goovaerts, P.: Geostatistics: a common link between medical geography, mathematical geology, and medical geology, J. S. Afr. I. Min. Metall., 114, 605–612, 2014.
Grafström, A. and Lisic, J.: BalancedSampling: Balanced and Spatially Balanced Sampling. R package version 1.5.2, available at: https://CRAN.R-project.org/package=BalancedSampling (last access: 26 March 2020), 2016.
Hatvani, I. G., Szatmàri, G., Kern, Z., Erdélyi, D., Vreča, P., Kanduč, T., Czuppon, G., Lojen, S., and Kohán , B.: Geostatistical evaluation of the design of the precipitation stable isotope monitoring network for Slovenia and Hungary, Environ. Int., 146, 106263, https://doi.org/10.1016/j.envint.2020.106263, 2021.
Heuvelink, G. B. M.: Uncertainty and uncertainty propagation in soil
mapping and modelling, in: Pedometrics (Progress in Soil Science), edited by: McBratney A. B., Minasny, B., and Stockmann, U., Springer International Publishing, 439–461, https://doi.org/10.1007/978-3-319-63439-5-14, 2018.
Holmes, K. W., Van Niel, K. P., Kendrick, G. A., and Radford, B.: Probabilistic large-area mapping of seagrass species distributions, Aquat. Conserv., 17, 385–407, 2007.
Hurst, R., Siyame, E. W. P., Young, S. D., Chilimba, A. D. C., Joy, E. J. M., Black, C. R., Ander, E. L., Watts, M. J., Chilima, B., Gondwe, J., Kang'ombe, D., Stein, A. J., Fairweather-Tait, S. J., Gibson, R. S., Kalimbira, A. A., and Broadley, M. R.: Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi, Sci. Rep., 3, 1425, https://doi.org/10.1038/srep01425, 2013.
Jenkins, S. C., Harris, A. J. L., and Lark, R. M.: When unlikely outcomes occur: the role of communication format in maintaining communicator credibility, J. Risk Res., 22, 537–554, https://doi.org/10.1080/13669877.2018.1440415, 2019.
Joy, E. J. M., Kumssa, D. B., Broadley, M. R., Watts, M. J., Young, S. D., Chilimba, A. D. C., and Ander, E. L.: Dietary mineral supplies in Malawi: spatial and socioeconomic assessment, BMC Nutrition, 1, 1–25, 2015.
Joy, E. J. M., Kalimbira, A. A., Gashu, D., Ferguson, E. L., Sturgess, J., Dangour, A. D., Banda, L., Chiutsi-Phiri, G., Bailey, E. H., Langley-Evans, S. C., Lark, R. M., Millar, K., Young, S. D., Matandika, L., Mfutso-Bengo, J., Phuka, J. C., Phiri, F. P., Gondwe, J., Ander, E. L., Lowe, N. M., Nalivata, P. C., Broadley, M. R., and Allen, E.: Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial, Trials, 20, 795, https://doi.org/10.1186/s13063-019-3894-2, 2019.
Kunz, M., Grêt-Regamey, A., and Hurni, L.: Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system, Nat. Hazards, 59, 1735–1751, https://doi.org/10.1007/s11069-011-9864-y, 2011.
Lark, R. M. and Marchant, B. P.: How should a spatial-coverage sample design for a geostatistical soil survey be supplemented to support estimation of spatial covariance parameters?, Geoderma, 319, 89–99, https://doi.org/10.1016/j.geoderma.2017.12.022, 2018.
Lark, R. M., Ander, E. L., Cave, M. R., Knights, K. V., Glennon, M. M., and Scanlon, R. P.: Mapping trace element deficiency by cokriging from regional geochemical soil data: A case study on cobalt for grazing sheep in Ireland, Geoderma, 226, 64–78, https://doi.org/10.1016/j.geoderma.2014.03.002, 2014a.
Lark, R. M., Mathers, S. J., Marchant, A., and Hulbert, A.: An index to represent lateral variation of the confidence of experts in a 3-D geological model, P. Geologists' Assoc.,125, 267–278, 2014b.
Lawal, B.: Applied Statistical Methods in Agriculture, Health and Life Sciences, Springer International Publishing, Switzerland, 2014.
Lelliott, M. R., Cave, M. R., and Wealthall, G. P.: A structured approach to the measurement of uncertainty in 3D geological models, Q. J. Eng. Geol. Hydroge., 42, 95–105, 2009.
Ligowe, I. S., Phiri, F. P., Ander, E. L., Bailey, E. H., Chilimba, A. D., Gashu, D., Joy, E. J., Lark, R. M., Kabambe, V., Kalimbira, A. A., Kumssa, D. B., Nalivata, P. C., Young, S. D., and Broadley, M. R.: Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages,
P. Nutr. Soc., 79, 457–467, https://doi.org/10.1017/S0029665120006904, 2020a.
Ligowe, I. S., Young, S. D., Ander, E. L., Kabambe, V., Chilimba, A. D.,
Bailey, E. H., Lark, R. M., and Nalivata, P. C.: Selenium biofortification of crops on a Malawi Alfisol under conservation agriculture, Geoderma, 369, 114–315, 2020b.
Marden, J.: Analyzing and modeling rank data, CRC Press, Boca Raton, 1995.
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Ottmar, E., Ebi, K. L.,
Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., Plattner,
G.-K., Yohe, G. W., and Zwiers, F. W.: Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties, Intergovernmental Panel on Climate Change (IPCC), IPCC Cross-Working Group Meeting on Consistent Treatment of UncertaintiesJasper Ridge, CA, USA, 6–7 July, 2010.
Milne, A. E., Glendining, M. J., Lark, R. M., Perryman, S. A. M., Gordon, T., and Whitmore, A. P.: Communicating the uncertainty in estimated greenhouse gas emissions from agriculture, J. Environ. Manage., 160, 139–153, https://doi.org/10.1016/j.jenvman.2015.05.034, 2015.
Pawlowsky-Glahn, V., and Olea, R. A.: Geostatistical Analysis of Compositional Data, Oxford University Press, 2004
Phiri, F. P., Ander, E. L., Bailey, E. H., Chilima, B., Chilimba, A. D. C., Gondwe, J., Joy, E. J. M., Kalimbira, A. A., Kumssa, D. B., Lark, R. M., Phuka, J. C., Salter, A., Suchdev, P. S., Watts, M. J., Young, S. D., and Broadley, M. R.: The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales, Sci. Rep., 9, 6566, https://doi.org/10.1038/s41598-019-43013-z, 2019.
Phiri, F. P., Ander, E. L., Lark, R. M., Bailey, E. H., Chilima, B., Gondwe, J., Joy, E. J. M., Kalimbira, A. A., Phuka, J. C., Suchdev, P. S., Middleton, D. R. S., Hamilton, E. M., Watts, M. J., Young, S. D., and Broadley, M. R.: Urine selenium concentration is a useful biomarker for assessing population level selenium status, Environ. Int., 134, 105218, https://doi.org/10.1016/j.envint.2019.105218, 2020.
R
Core Team: R
: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/, last access: 3 March 2020.
Rayman, M. P.: The importance of selenium to human health, Lancet, 356, 233–241, https://doi.org/10.1016/s0140-6736(00)02490-9, 2000.
Spiegelhalter, D., Pearson, M., and Short, I.: Visualizing Uncertainty About the Future, Science, 333, 1393–1400, https://doi.org/10.1126/science.1191181, 2011.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S.
Fourth Edition, Springer-Verlag, New York, 2002.
Walvoort, D. J. J., Brus, D. J., and de Gruijter, J. J.: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means, Comput. Geosci., 36, 1261–1267, https://doi.org/10.1016/j.cageo.2010.04.005, 2010.
Webster, R. and Oliver, M. A.: Geostatistics for Natural Environmental Scientists, 2nd edn., John Wiley & Sons Chichester, 2007.
Winther, K. H., Rayman, M. P., Bonnema, S. J., and Hegedus, L.: Selenium in thyroid disorders – essential knowledge for clinicians, Nat. Rev. Endocrinol., 16, 165–176, https://doi.org/10.1038/s41574-019-0311-6, 2020.
Zikmund-Fisher, B. J., Fagerlin, A., and Ubel, P. A.: Improving Understanding of Adjuvant Therapy Options by Using Simpler Risk Graphics, Cancer, 113, 3382–3390, https://doi.org/10.1002/cncr.23959, 2008.
Short summary
Our study is concerned with how the uncertainty in spatial information about environmental variables can be communicated to stakeholders who must use this information to make decisions. We tested five methods for communicating the uncertainty in spatial predictions by eliciting the opinions of end-users about the usefulness of the methods. End-users preferred methods based on the probability that concentrations are below or above a nutritionally significant threshold.
Our study is concerned with how the uncertainty in spatial information about environmental...
Altmetrics
Final-revised paper
Preprint