Articles | Volume 7, issue 4
https://doi.org/10.5194/gc-7-267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-7-267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic Tectonics and Volcanism: a multi-scale, multi-disciplinary educational approach
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Geodynamics of the Polar Regions, Department of Geosciences, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
Grace Shephard
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Research School of Earth Sciences, Australian National University, Acton, Canberra, Australia
Fenna Ammerlaan
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Owen Anfinson
Department of Geology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
Pascal Audet
Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada
Bernard Coakley
Geophysical Institute, University of Alaska, Fairbanks, AK 99775, USA
Victoria Ershova
St Petersburg State University, 199034, University emb. 7–9, Saint Petersburg, Russia
Jan Inge Faleide
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Sten-Andreas Grundvåg
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway
Rafael Kenji Horota
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Karthik Iyer
Geomodelling Solutions GmbH, Hardturmstrasse 120, 8005 Zurich, Switzerland
Julian Janocha
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway
Morgan Jones
Department of Ecology and Environmental Science (EMG), University of Umeå, Linnaeus väg 4-6, 907 36 Umeå, Sweden
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Alexander Minakov
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Margaret Odlum
Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Anna Sartell
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
Andrew Schaeffer
Geological Survey of Canada, Pacific Division, Natural Resources Canada, Sidney, British Columbia, Canada
Daniel Stockli
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
Marie Annette Vander Kloet
Department of Education, University of Bergen, Bergen, Norway
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Carmen Gaina
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Rafael Kenji Horota, Christian Haug Eide, Kim Senger, Marius Opsanger Jonassen, and Marie Annette Vander Kloet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2248, https://doi.org/10.5194/egusphere-2025-2248, 2025
Short summary
Short summary
We explored how virtual tools can help students prepare for and reflect on outdoor learning in the Arctic. Using surveys from university courses in Svalbard, we found that digital field visits helped students feel more confident, better understand the landscape, and learn more effectively. These tools do not replace real fieldwork but make it more accessible and inclusive. Our research shows how technology can support hands-on learning in remote environments.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Björn H. Heincke, Wolfgang Szwillus, Judith Freienstein, Jörg Ebbing, Carmen Gaina, Antonia Ruppel, Yixiati Dilixiati, and Agnes Wansing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-448, https://doi.org/10.5194/essd-2025-448, 2025
Preprint under review for ESSD
Short summary
Short summary
With over three-quarters of Greenland hidden beneath ice, direct geological observation is nearly impossible. Magnetic mapping provides now a passive and efficient geophysical method to image hidden subsurface features, offering a powerful tool for tectonic analysis and geological modeling in otherwise inaccessible regions. We have now developed a new magnetic anomaly map of Greenland using state-of-the-art technology providing new insight into Greenland’s buried geology.
Rafael Kenji Horota, Christian Haug Eide, Kim Senger, Marius Opsanger Jonassen, and Marie Annette Vander Kloet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2248, https://doi.org/10.5194/egusphere-2025-2248, 2025
Short summary
Short summary
We explored how virtual tools can help students prepare for and reflect on outdoor learning in the Arctic. Using surveys from university courses in Svalbard, we found that digital field visits helped students feel more confident, better understand the landscape, and learn more effectively. These tools do not replace real fieldwork but make it more accessible and inclusive. Our research shows how technology can support hands-on learning in remote environments.
Peter Betlem, Nil Rodes, Sara Mollie Cohen, and Marie A. Vander Kloet
Geosci. Commun., 8, 51–65, https://doi.org/10.5194/gc-8-51-2025, https://doi.org/10.5194/gc-8-51-2025, 2025
Short summary
Short summary
Together with our students, we co-created two open geoscientific course modules using the Jupyter Book framework. Students were happy with the framework's accessibility, inclusivity, interactivity, and multimedia content and eagerly contributed to the educational materials through the GitHub backend when given the opportunity. Our efforts are an important step in the development of geoscientific open educational content co-created by technical experts, social scientists, and students alike.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Cited articles
Abdelmalak, M. M., Gac, S., Faleide, J. I., Shephard, G. E., Tsikalas, F., Polteau, S., Zastrozhnov, D., and Torsvik, T. H.: Quantification and Restoration of the Pre-Drift Extension Across the NE Atlantic Conjugate Margins During the Mid-Permian-Early Cenozoic Multi-Rifting Phases, Tectonics, 42, e2022TC007386, https://doi.org/10.1029/2022TC007386, 2023.
Abdelmalak, M. M., Minakov, A., Faleide, J. I., and Drachev, S. S.: Lomonosov Ridge Composite Tectono-Sedimentary Element, Arctic Ocean, Geological Society, London, Memoirs, 57, M57-2022-2072, https://doi.org/10.1144/M57-2022-72, 2024.
Anell, I., Braathen, A., and Olaussen, S.: The Triassic-Early Jurassic of the northern Barents Shelf: a regional understanding of the Longyearbyen CO2 reservoir, Norw. J. Geol., 94, 83–98, 2014.
Anfinson, O. A., Leier, A. L., Embry, A. F., and Dewing, K.: Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands, GSA Bulletin, 124, 415–430, https://doi.org/10.1130/b30503.1, 2012.
Anfinson, O. A., Odlum, M. L., Piepjohn, K., Poulaki, E. M., Shephard, G. E., Stockli, D. F., Levang, D., Jensen, M. A., and Pavlovskaia, E. A.: Provenance Analysis of the Andrée Land Basin and Implications for the Paleogeography of Svalbard in the Devonian, Tectonics, 41, e2021TC007103, https://doi.org/10.1029/2021TC007103, 2022.
Atchison, C. L. and Libarkin, J. C.: Fostering accessibility in geoscience training programs, Eos, Transactions American Geophysical Union, 94, 400-400, 2013.
Beranek, L. P., Gee, D. G., and Fisher, C. M.: Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides, GSA Bulletin, 132, 1987–2003, https://doi.org/10.1130/b35318.1, 2020.
Betlem, P., Rodes, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A., and Senger, K.: The Svalbox Digital Model Database: a geoscientific window to the High Arctic, Geosphere, 19, 1640–1666, https://doi.org/10.1130/GES02606.1, 2023.
Blakey, R.: Paleotectonic and paleogeographic history of the Arctic region, Atl. Geol., 57, 7–39, https://doi.org/10.4138/atlgeol.2021.002, 2021.
Blischke, A., Brandsdóttir, B., Stoker, M. S., Gaina, C., Erlendsson, Ö., Tegner, C., Halldórsson, S. A., Helgadóttir, H. M., Gautason, B., Planke, S., Koppers, A. A. P., and Hopper, J. R.: Seismic Volcanostratigraphy: The Key to Resolving the Jan Mayen Microcontinent and Iceland Plateau Rift Evolution, Geochem. Geophy. Geosy., 23, e2021GC009948, https://doi.org/10.1029/2021GC009948, 2022.
Bouziat, A., Schmitz, J., Deschamps, R., and Labat, K.: Digital transformation and geoscience education: New tools to learn, new skills to grow, European Geologist European Geologist, 15, 15–19, 2020.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, edited by: Keller, G. R. and Baru, C., Cambridge, Cambridge University Press, 95–113, https://doi.org/10.1017/CBO9780511976308.008, 2011.
Braathen, A., Bergh, S. G., and Maher, H. D., Jr: Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard, Geol. Soc. Am. Bull., 111, 1468–1485, 1999.
Brekke, H. and Banet, C.: The Law of the Seabed: Access, Uses, and Protection of Seabed Resources, in: Chapter 4 Setting Maritime Limits and Boundaries: Experiences from Norway, Brill | Nijhoff, 85–103, ISBN (e-book) 978-90-04-39156-7, 2020.
Brekke, T., Krajewski, K. P., and Hubred, J. H.: Organic geochemistry and petrography of thermally altered sections of the Middle Triassic Botneheia Formation on south-western Edgeøya, Svalbard, Norwegian Petroleum Directorate Bulletin, 11, 111–128, 2014.
Brustnitsyna, E., Ershova, V., Khudoley, A., Maslov, A., Andersen, T., Stockli, D., and Kristoffersen, M.: Age and provenance of the Precambrian Middle Timan clastic succession: Constraints from detrital zircon and rutile studies, Precambrian Res., 371, 106580, https://doi.org/10.1016/j.precamres.2022.106580, 2022.
Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J. A., and Dewez, T. J.: LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models, Geosphere, 15, 222–235, doi.org/10.1130/GES02002.1, 2019.
Colpron, M. and Nelson, J. L.: A Palaeozoic Northwest Passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera, Geol. Soc. Lond. Spec. Publ., 318, 273–307, https://doi.org/10.1144/SP318.10, 2009.
Corfu, F., Polteau, S., Planke, S., Faleide, J. I., Svensen, H., Zayoncheck, A., and Stolbov, N.: U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 150, 1127–1135, 2013.
Dallmann, W.: Geoscience Atlas of Svalbard, Norsk Polarinstitutt Rapportserie, 148, 292, http://hdl.handle.net/11250/2580810 (last access: 7 December 2024), 2015.
Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina, T. M., Steel, R. J., and Worsley, D.: Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use, edited by: Dallmann, W. K., Norsk Polarinstitutt, Tromsø, 318 pp., ISBN 8276661661, https://nhm2.uio.no/norges/litho/svalbard/refs.htm (last access: 7 December 2024), 1999.
Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petr., 40, 259–274, https://doi.org/10.1007/BF00373790, 1973.
Døssing, A., Gaina, C., and Brozena, J. M.: Building and breaking a large igneous province: An example from the High Arctic, Geophys. Res. Lett., 44, 6011–6019, https://doi.org/10.1002/2016GL072420, 2017.
Døssing, A., Gaina, C., Jackson, H. R., and Andersen, O. B.: Cretaceous ocean formation in the High Arctic, Earth Planet. Sc. Lett., 551, 116552, https://doi.org/10.1016/j.epsl.2020.116552, 2020.
Eidesen, P. and Hjelle, S. S.: How to make virtual field guides, and use them to bridge field-and classroom teaching, Authorea [preprint], https://doi.org/10.22541/au.168001737.79628030/v1, 2023.
Ershova, V., Anfinson, O., Prokopiev, A., Khudoley, A., Stockli, D., Faleide, J. I., Gaina, C., and Malyshev, N.: Detrital zircon (U-Th)/He ages from Paleozoic strata of the Severnaya Zemlya Archipelago: Deciphering multiple episodes of Paleozoic tectonic evolution within the Russian High Arctic, J. Geodynam., 119, 210–220, 2018.
Ershova, V., Prokopiev, A., Stockli, D., Kurapov, M., Kosteva, N., Rogov, M., Khudoley, A., and Petrov, E. O.: Provenance of the Mesozoic Succession of Franz Josef Land (North-Eastern Barents Sea): Paleogeographic and Tectonic Implications for the High Arctic, Tectonics, 41, e2022TC007348, https://doi.org/10.1029/2022TC007348, 2022.
Evenchick, C. A., Davis, W. J., Bédard, J. H., Hayward, N., and Friedman, R. M.: Evidence for protracted High Arctic large igneous province magmatism in the central Sverdrup Basin from stratigraphy, geochronology, and paleodepths of saucer-shaped sills, Geol. Soc. Am. Bull., 127, 1366–1390, https://doi.org/10.1130/b31190.1, 2015.
Ford, J. D., Pearce, T., Canosa, I. V., and Harper, S.: The rapidly changing Arctic and its societal implications, WIREs Clim. Change, 12, e735, https://doi.org/10.1002/wcc.735, 2021.
Gaina, C.: Arctic Continental Margins, Continental Rifted Margins 2: Case Examples, 133–148, 2022.
Gaina, C., Werner, S. C., Saltus, R., Maus, S., and the CAMP-GM GROUP: Chapter 3 Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic, Geol. Soc. Lond. Mem., 35, 39–48, https://doi.org/10.1144/m35.3, 2011.
Gee, D.: Caledonides of Scandinavia, Greenland, and Svalbard, Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489, https://doi.org/10.1016/B978-0-12-409548-9.09133-8, 2015.
Gee, D. G., Bogolepova, O. K., and Lorenz, H.: The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia, Geol. Soc. Lond. Mem., 32, 507–520, https://doi.org/10.1144/GSL.MEM.2006.032.01.31, 2006.
Gilmullina, A., Klausen, T. G., Paterson, N. W., Suslova, A., and Eide, C. H.: Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for sediment transport in Arctic basins, Basin Res., 33, 1546–1579, https://doi.org/10.1111/bre.12526, 2021.
Glørstad-Clark, E., Birkeland, E. P., Nystuen, J. P., Faleide, J. I., and Midtkandal, I.: Triassic platform-margin deltas in the western Barents Sea, Mar. Petrol. Geol., 28, 1294–1314, https://doi.org/10.1016/j.marpetgeo.2011.03.006, 2011.
Gold, A. U., Kirk, K., Morrison, D., Lynds, S., Sullivan, S. B., Grachev, A., and Persson, O.: Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data Into the Classroom, Journal of Geoscience Education, 63, 185–197, https://doi.org/10.5408/14-030.1, 2015.
Gold, A. U., Pfirman, S., and Scowcroft, G. A.: The imperative for polar education, Journal of Geoscience Education, 69, 97–99, https://doi.org/10.1080/10899995.2021.1903242, 2021.
Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr-Hansen, H., Jelby, M. E., Escalona, A., and Olaussen, S.: The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations, Mar. Petrol. Geol., 86, 834–857, https://doi.org/10.1016/j.marpetgeo.2017.06.036, 2017.
Gunderson, K. L., Holmes, R. C., and Loisel, J.: Recent digital technology trends in geoscience teaching and practice, GSA Today, 30, 39–41, 2020.
Hall, C. A., Illingworth, S., Mohadjer, S., Roxy, M. K., Poku, C., Otu-Larbi, F., Reano, D., Freilich, M., Veisaga, M.-L., Valencia, M., and Morales, J.: GC Insights: Diversifying the geosciences in higher education: a manifesto for change, Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022, 2022.
Harrison, J. C., St-Onge, M. R., Petrov, O., Strelnikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F., and Solli, A.: Geological map of the Arctic, Geological Survey of Canada, Open File, 5816, https://doi.org/10.4095/287868, 2008.
Heininen, L., Everett, K., Padrtova, B., and Reissell, A.: Arctic Policies and Strategies – Analysis, Synthesis, and Trends, International Institute for Applied Systems Analysis, Laxenburg, Austria https://doi.org/10.22022/AFI/11-2019.16175, 2020.
Helland-Hansen, W. and Grundvåg, S.-A.: The Svalbard Eocene-Oligocene (?) Central Basin succession: Sedimentation patterns and controls, Basin Res., 33, 729–753, https://doi.org/10.1111/bre.12492, 2020.
Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K., and Stoupakova, A. V.: Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems, in: Arctic Petroleum Geology, edited by: Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V., and Sørensen, K., 1, The Geological Society, London, 163–195, 2011.
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S.: Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?, Geology, 30, 251–254, https://doi.org/10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2, 2002.
Horota, R. K., Senger, K., Rodes, N., Betlem, P., Smyrak-Sikora, A., Jonassen, M. O., Kramer, D., and Braathen, A.: West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology, J. Struct. Geol., 167, 104781, https://doi.org/10.1016/j.jsg.2022.104781, 2023.
Horota, R. K., Senger, K., Smyrak-Sikora, A., Furze, M., Retelle, M., Kloet, M. A. V., and Jonassen, M. O.: VR Svalbard – a photosphere-based atlas of a high Arctic geo-landscape, First Break, 42, 35–42, https://doi.org/10.3997/1365-2397.fb2024029, 2024.
Hosseini, K., Matthews, K. J., Sigloch, K., Shephard, G. E., Domeier, M., and Tsekhmistrenko, M.: SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth's Deep Interior, Geochem. Geophy. Geosy., 19, 1464–1483, https://doi.org/10.1029/2018GC007431, 2018.
Iyer, K., Svensen, H., and Schmid, D. W.: SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions, Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, 2018.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jones, M. T., Augland, L. E., Shephard, G. E., Burgess, S. D., Eliassen, G. T., Jochmann, M. M., Friis, B., Jerram, D. A., Planke, S., and Svensen, H. H.: Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers, Sci. Rep., 7, 6822, https://doi.org/10.1038/s41598-017-06170-7, 2017.
Khudoley, A. K., Sobolev, N. N., Petrov, E. O., Ershova, V. B., Makariev, A. A., Makarieva, E. V., Gaina, C., and Sobolev, P. O.: A reconnaissance provenance study of Triassic–Jurassic clastic rocks of the Russian Barents Sea, GFF, 141, 263–271, https://doi.org/10.1080/11035897.2019.1621372, 2019.
Klausen, T. G., Nyberg, B., and Helland-Hansen, W.: The largest delta plain in Earth's history, Geology, 47, 470–474, https://doi.org/10.1130/G45507.1, 2019.
Kristoffersen, Y.: Chapter 45 Geophysical exploration of the Arctic Ocean: the physical environment, survey techniques and brief summary of knowledge, Geol. Soc. Lond. Mem., 35, 685–702, https://doi.org/10.1144/m35.45, 2011.
Kristoffersen, Y., Nilsen, E. H., and Hall, J. K.: The High Arctic Large Igneous Province: first seismic-stratigraphic evidence for multiple Mesozoic volcanic pulses on the Lomonosov Ridge, central Arctic Ocean, J. Geol. Soc., 180, jgs2022-2153, https://doi.org/10.1144/jgs2022-153, 2023.
Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J.: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, 2021.
Kurapov, M., Ershova, V., Khudoley, A., Luchitskaya, M., Stockli, D., Makariev, A., Makarieva, E., and Vishnevskaya, I.: Latest Permian–Triassic magmatism of the Taimyr Peninsula: New evidence for a connection to the Siberian Traps large igneous province, Geosphere, 17, 2062–2077, https://doi.org/10.1130/ges02421.1, 2021.
Lebedeva-Ivanova, N., Gaina, C., Minakov, A., and Kashubin, S.: ArcCRUST: Arctic Crustal Thickness From 3-D Gravity Inversion, Geochem. Geophy. Geosy., 20, 3225–3247, https://doi.org/10.1029/2018GC008098, 2019.
Lord, G., Janocha, J., Rodes, N., and Betlem, P.: Svalbox-DOM_2020-0015_Lagmannstoppen-East, Zenodo [data set], https://doi.org/10.5281/zenodo.5700918, 2021.
Lundschien, B. A., Høy, T., and Mørk, A.: Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data, Norwegian Petroleum Directorate Bulletin, 11, 3–20, 2014.
Malm, R. H.: Developing an Arctic Geology course: exploring the role of fieldwork in a challenging learning space, Uniped, 44, 178–189, https://doi.org/10.18261/issn.1893-8981-2021-03-04, 2021.
Maurer, M. E.: likertplot.com – Plot Likert Scales”, http://likertplot.com/ (last access: 7 December 2024), 2013.
McCaffrey, K., Jones, R., Holdsworth, R., Wilson, R., Clegg, P., Imber, J., Holliman, N., and Trinks, I.: Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork, J. Geol. Soc., 162, 927–938, 2005.
Midtkandal, I., Faleide, J. I., Faleide, T. S., Serck, C. S., Planke, S., Corseri, R., Dimitriou, M., and Nystuen, J. P.: Lower Cretaceous Barents Sea strata: epicontinental basin configuration, timing, correlation and depositional dynamics, Geol. Mag., 157, 458–476, https://doi.org/10.1017/S0016756819000918, 2019.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A., and Freiman, S. I.: Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data, Tectonophysics, 746, 64–82, https://doi.org/10.1016/j.tecto.2017.09.006, 2018.
Nordregio: Indigenous population in the Arctic, https://nordregio.org/maps/indigenous-population-in-the-arctic/ (last access: 7 December 2024), 2019.
Olaussen, S., Grundvåg, S.-A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E. P., Lord, G., Mørk, A., Osmundsen, P. T., Smyrak-Sikora, A., and Stemmerik, L.: Svalbard Composite Tectono-Sedimentary Element, Barents Sea, Geol. Soc. Lond. Mem., 57, M57-2021-2036, https://doi.org/10.1144/M57-2021-36, 2024.
Petrov, O. V., Pubellier, M., Shokalsky, S. P., Morozov, A. F., Kazmin, Y. B., Kashubin, S. N., Vernikovsky, V. A., Smelror, M., Brekke, H., Kaminsky, V. D., and Pospelov, I. I.: New Tectonic Map of the Arctic, in: Tectonics of the Arctic, edited by: Petrov, O. V., and Smelror, M., Springer International Publishing, Cham, 1–27, https://doi.org/10.1130/2018.2541(08), 2021.
Piepjohn, K., von Gosen, W., and Tessensohn, F.: The Eurekan deformation in the Arctic: an outline, J. Geol. Soc., 173, 1007–1024, 2016.
Proelss, A.: Governing the Arctic Ocean, Nat. Geosci., 2, 310–313, https://doi.org/10.1038/ngeo510, 2009.
Prokopiev, A. V., Ershova, V. B., Anfinson, O., Stockli, D., Powell, J., Khudoley, A. K., Vasiliev, D. A., Sobolev, N. N., and Petrov, E. O.: Tectonics of the New Siberian Islands archipelago: Structural styles and low-temperature thermochronology, J. Geodynam., 121, 155–184, https://doi.org/10.1016/j.jog.2018.09.001, 2018.
Prokopiev, A. V., Ershova, V. B., and Stockli, D. F.: Provenance of the Devonian–Carboniferous clastics of the southern part of the Prikolyma terrane (Verkhoyansk–Kolyma orogen) based on U–Pb dating of detrital zircons, GFF, 141, 272–278, https://doi.org/10.1080/11035897.2019.1621373, 2019.
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223–1236, https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A., Pokrovsky, B. G., and Khudoley, A. K.: Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes, Cretaceous Res., 71, 102–112, 2017.
Rogov, M. M., Ershova, V., Gaina, C., Vereshchagin, O., Vasileva, K., Mikhailova, K., and Krylov, A.: Glendonites throughout the Phanerozoic, Earth-Sci. Rev., 241, 104430, https://doi.org/10.1016/j.earscirev.2023.104430, 2023a.
Rogov, M. A., Panchenko, I. V., Augland, L. E., Ershova, V. B., and Yashunsky, V. Y.: The first CA-ID-TIMS U-Pb dating of the Tithonian/Berriasian boundary beds in a Boreal succession, Gondwana Res., 118, 165–173, https://doi.org/10.1016/j.gr.2023.02.010, 2023b.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global multi‐resolution topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Saltus, R. W., Miller, E. L., Gaina, C., and Brown, P. J.: Chapter 4 Regional magnetic domains of the Circum-Arctic: a framework for geodynamic interpretation, Geol. Soc. Lond. Mem., 35, 49–60, https://doi.org/10.1144/m35.4, 2011.
Schaeffer, A. J. and Lebedev, S.: Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417–449, https://doi.org/10.1093/gji/ggt095, 2013.
Schneider, D. A., Faehnrich, K., Majka, J., Manecki, M., Piepjohn, K., Strauss, J. V., Reinhardt, L., and McClelland, W. C.: 40Ar/39Ar geochronologic evidence of Eurekan deformation within the West Spitsbergen Fold and Thrust Belt, in: Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, Geol. Soc. Am., https://doi.org/10.1130/2018.2541(08), 2019.
Senger, K. and Galland, O.: Stratigraphic and Spatial extent of HALIP Magmatism in central Spitsbergen, Geochem. Geoph. Geosy., 23, e2021GC010300, https://doi.org/10.1029/2021GC010300, 2022.
Senger, K. and Shephard, G.: Arctic Tectonics and Volcanism: a multi-scale, multidisciplinary educational approach (Petrel and GPlates data package), Zenodo [data set], https://doi.org/10.5281/zenodo.10259590, 2023.
Senger, K. and Nordmo, I.: Using digital field notebooks in geoscientific learning in polar environments, Journal of Geoscience Education, 69, 166–177, https://doi.org/10.1080/10899995.2020.1725407, 2021.
Senger, K., Planke, S., Polteau, S., Ogata, K., and Svensen, H.: Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway, Norw. J. Geol., 94, 155–169, 2014a.
Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S.: Late Mesozoic magmatism in Svalbard: A review, Earth-Sci. Rev., 139, 123–144, 2014b.
Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C. H., Flaig, P. P., Forien, M., Galland, O., Gonzaga Jr., L., Jensen, M., Kurz, T., Lecomte, I., Mair, K., Malm, R., Mulrooney, M., Naumann, N., Nordmo, I., Nolde, N., Ogata, K., Rabbel, O., Schaaf, N. W., and Smyrak-Sikora, A.: Using digital outcrops to make the high Arctic more accessible through the Svalbox database, Journal of Geoscience Education, 69, 123–137, https://doi.org/10.1080/10899995.2020.1813865, 2021a.
Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R. K., Buckley, S. J., Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha, J., Ogata, K., Kuckero, L., Johannessen, R. M., Lecomte, I., Cohen, S. M., and Olaussen, S.: Teaching with digital geology in the high Arctic: opportunities and challenges, Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, 2021b.
Senger, K., Betlem, P., Birchall, T., Gonzaga Jr., L., Grundvåg, S.-A., Horota, R. K., Laake, A., Kuckero, L., Mørk, A., Planke, S., Rodes, N., and Smyrak-Sikora, A.: Digitising Svalbard's Geology: the Festningen Digital Outcrop Model, First Break, 40, 47–55, https://doi.org/10.3997/1365-2397.fb2022021, 2022.
Senger, K., Kulhanek, D., Jones, M. T., Smyrak-Sikora, A., Planke, S., Zuchuat, V., Foster, W. J., Grundvåg, S.-A., Lorenz, H., Ruhl, M., Sliwinska, K. K., Vickers, M. L., and Xu, W.: Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report, Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, 2023.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shephard, G. E., Müller, R. D., and Seton, M.: The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure, Earth-Sci. Rev., 124, 148–183, 2013.
Smyrak-Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., and Braathen, A.: Sedimentary architecture during Carboniferous rift initiation–the arid Billefjorden Trough, Svalbard, J. Geol. Soc., 176, 225–252, 2019.
Straume, E. O., Gaina, C., Medvedev, S., and Nisancioglu, K. H.: Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways, Gondwana Res., 86, 126–143, https://doi.org/10.1016/j.gr.2020.05.011, 2020.
Straume, E. O., Nummelin, A., Gaina, C., and Nisancioglu, K. H.: Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways, P. Natl. Acad. Sci. USA, 119, e2115346119, https://doi.org/10.1073/pnas.2115346119, 2022.
Struijk, E. L. M., Tesauro, M., Lebedeva-Ivanova, N. N., Gaina, C., Beekman, F., and Cloetingh, S. A. P. L.: The Arctic lithosphere: Thermo-mechanical structure and effective elastic thickness, Global Planet. Change, 171, 2–17, https://doi.org/10.1016/j.gloplacha.2018.07.014, 2018.
Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, 2004.
Tavani, S., Billi, A., Corradetti, A., Mercuri, M., Bosman, A., Cuffaro, M., Seers, T., and Carminati, E.: Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones, Earth-Sci. Rev., 227, 103969, https://doi.org/10.1016/j.earscirev.2022.103969, 2022.
Topp-Jørgensen, E., Holste, S., Duveau, S. D., Ibáñez, M. M., Vural, D., Duncan, R., Gremion, G., Hancock, S., Rosenbaum, P., Burmenko, T., and Thomas, F. A.: INTERACT Reducing CO2 Emissions in Arctic Science, INTERACT, https://eu-interact.org/app/uploads/2022/10/INTERACTCo2-reduction-guidebook_FINAL-WORK_DPS.pdf (last access: 7 December 2024), 2022.
Vasileva, K., Zaretskaya, N., Ershova, V., Rogov, M., Stockli, L. D., Stockli, D., Khaitov, V., Maximov, F., Chernyshova, I., Soloshenko, N., Frishman, N., Panikorovsky, T., and Vereshchagin, O.: New model for seasonal ikaite precipitation: Evidence from White Sea glendonites, Mar. Geol., 449, 106820, https://doi.org/10.1016/j.margeo.2022.106820, 2022.
Whitmeyer, S. J., Atchison, C., and Collins, T. D.: Using Mobile Technologies to Enhance Accessibility and Inclusion in Field-Based Learning, GSA Today, 30, 4–10, https://doi.org/10.1130/GSATG462A.1, 2020.
Wignall, P. B.: Large igneous provinces and mass extinctions, Earth-Sci. Rev., 53, 1–33, https://doi.org/10.1016/s0012-8252(00)00037-4, 2001.
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
The article describes a course that we have developed at the University Centre in Svalbard that...
Altmetrics
Final-revised paper
Preprint