Articles | Volume 7, issue 4
https://doi.org/10.5194/gc-7-267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-7-267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic Tectonics and Volcanism: a multi-scale, multi-disciplinary educational approach
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Geodynamics of the Polar Regions, Department of Geosciences, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
Grace Shephard
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Research School of Earth Sciences, Australian National University, Acton, Canberra, Australia
Fenna Ammerlaan
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Owen Anfinson
Department of Geology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
Pascal Audet
Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada
Bernard Coakley
Geophysical Institute, University of Alaska, Fairbanks, AK 99775, USA
Victoria Ershova
St Petersburg State University, 199034, University emb. 7–9, Saint Petersburg, Russia
Jan Inge Faleide
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Sten-Andreas Grundvåg
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway
Rafael Kenji Horota
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Karthik Iyer
Geomodelling Solutions GmbH, Hardturmstrasse 120, 8005 Zurich, Switzerland
Julian Janocha
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway
Morgan Jones
Department of Ecology and Environmental Science (EMG), University of Umeå, Linnaeus väg 4-6, 907 36 Umeå, Sweden
Department of Geosciences, University of Oslo, Oslo 0315, Norway
Alexander Minakov
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Margaret Odlum
Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Anna Sartell
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
Andrew Schaeffer
Geological Survey of Canada, Pacific Division, Natural Resources Canada, Sidney, British Columbia, Canada
Daniel Stockli
Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
Marie Annette Vander Kloet
Department of Education, University of Bergen, Bergen, Norway
Department of Arctic Geology, The University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
Carmen Gaina
Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Peter Betlem, Nil Rodes, Sara Mollie Cohen, and Marie Vander Kloet
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-6, https://doi.org/10.5194/gc-2024-6, 2024
Revised manuscript accepted for GC
Short summary
Short summary
Together with our students, we co-created two open geoscientific course modules using the Jupyter Book framework. Students were happy with the framework's accessibility, inclusivity, interactivity, and multimedia content and eagerly contributed to the learning materials through Github when given the opportunity. Our efforts are an important step in the development of open educational geoscientific content co-created with input from technical experts, social scientists, and students alike.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary
Short summary
(U–Th) / He chronometry relies on accurate grain-specific size and shape measurements. Using > 100 apatite grains to compare
assumed2-D versus
true3-D grain shapes measured by a microscope and X-ray computed tomography, respectively, we find that volume and surface area both differ by ~ 25 % between the two techniques and directly affect mass and concentration measurements. But we found a very small effect on the FT correction (2 %) and no discernible impact on mean sample age or dispersion.
Peter D. Clift, Peng Zhou, Daniel F. Stockli, and Jerzy Blusztajn
Solid Earth, 10, 647–661, https://doi.org/10.5194/se-10-647-2019, https://doi.org/10.5194/se-10-647-2019, 2019
Short summary
Short summary
Surface processes driven by climate have been linked to the tectonic evolution of mountain belts, with the Himalaya and Asian monsoon being classic examples. Sediments from the Arabian Sea show an increase in erosion from the Karakoram between 17 and 9.5 Ma, followed by an increase in the relative flux from the Himalaya after 5.7 Ma and especially from the Lesser Himalaya after 1.9 Ma. Lack of correlation with climate histories suggests that tectonic forces dominate control over erosion.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Jean-Baptiste P. Koehl, Steffen G. Bergh, Tormod Henningsen, and Jan Inge Faleide
Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, https://doi.org/10.5194/se-9-341-2018, 2018
Short summary
Short summary
The goal of this work is to study large cracks in the Earth's crust called faults near the coast of northern Norway in the SW Barents Sea. We interpreted seismic data (equivalent to X-ray diagram of the Earth) that showed the presence of a large fault near the coast of Norway, which contributed to building the mountain chain observed in Norway and later helped open the North Atlantic Ocean, separating Greenland from Norway.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
P. Klitzke, J. I. Faleide, M. Scheck-Wenderoth, and J. Sippel
Solid Earth, 6, 153–172, https://doi.org/10.5194/se-6-153-2015, https://doi.org/10.5194/se-6-153-2015, 2015
Short summary
Short summary
We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on five sedimentary units and the crystalline crust as well as the configuration of the lithospheric mantle. By relating the shallow and deep structures for certain tectonic subdomains, we shed new light on possible causative basin-forming mechanisms that we discuss.
Related subject area
Subject: Geoscience education | Keyword: Pedagogy
The weather today rocks or sucks for my tree: exploring the understanding of climate impacts on forests at high school level through tweets
Climate Denial – the Antithesis of Climate Education: A Review
The Rock Garden: a preliminary assessment of how campus-based field skills training impacts student confidence in real-world fieldwork
GC Insights: The crystal structures behind mineral properties – a case study of using TotBlocks in an undergraduate optical mineralogy lab
Building confidence in STEM students through breaking (unseen) barriers
The potential for using video games to teach geoscience: learning about the geology and geomorphology of Hokkaido (Japan) from playing Pokémon Legends: Arceus
Learning outcomes, learning support, and cohort cohesion on a virtual field trip: an analysis of student and staff perceptions
GC Insights: Diversifying the geosciences in higher education: a manifesto for change
A snapshot sample on how COVID-19 impacted and holds up a mirror to European water education
Virtual field experiences in a web-based video game environment: open-ended examples of existing and fictional field sites
GC Insights: Geoscience students' experience of writing academic poetry as an aid to their science education
GC Insights: Space sector careers resources in the UK need a greater diversity of roles
A remote field course implementing high-resolution topography acquisition with geomorphic applications
From a virtual field trip to geologically reasoned decisions in Yosemite Valley
Multi-scale virtual field experience: sedimentology and stratigraphy of Grand Ledge, Michigan, USA
Virtual mapping and analytical data integration: a teaching module using Precambrian crystalline basement in Colorado's Front Range (USA)
Virtual field trips as a tool for indirect geomorphological experience: a case study from the southeastern part of the Gulf of Corinth, Greece
Development and implementation of virtual field teaching resources: two karst geomorphology modules and three virtual capstone pathways
Using paired teaching for earthquake education in schools
Evaluating participants' experience of extended interaction with cutting-edge physics research through the PRiSE “research in schools” programme
Schools of all backgrounds can do physics research – on the accessibility and equity of the Physics Research in School Environments (PRiSE) approach to independent research projects
A flexible, open, and interactive digital platform to support online and blended experiential learning environments: Thinglink and thin sections
Volcanoes in video games: the portrayal of volcanoes in commercial off-the-shelf (COTS) video games and their learning potential
Celebrating 25 years of seismology at schools in France
Thomas Mölg, Jan C. Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun., 7, 215–225, https://doi.org/10.5194/gc-7-215-2024, https://doi.org/10.5194/gc-7-215-2024, 2024
Short summary
Short summary
We examine the understanding of weather and climate impacts on forest health in high school students. Climate physics, tree ring science, and educational research collaborate to provide an online platform that captures the students’ observations, showing they translate the measured weather and basic tree responses well. However, students hardly ever detect the causal connections. This result will help refine future classroom concepts and public climate change communication on changing forests.
Gerald Kutney
EGUsphere, https://doi.org/10.5194/egusphere-2024-339, https://doi.org/10.5194/egusphere-2024-339, 2024
Short summary
Short summary
This review examines the current state of global climate education, which shows that a problem exists and considers the causes and possible solutions. The problem does not appear to be climate education directly, or climate communication or climate science. Climate denial is the external force blunting the impact of climate education. Specific examples of climate denial in schools in North America and Europe are examined and how to deal with it.
Thomas W. Wong Hearing, Stijn Dewaele, Stijn Albers, Julie De Weirdt, and Marc De Batist
Geosci. Commun., 7, 17–33, https://doi.org/10.5194/gc-7-17-2024, https://doi.org/10.5194/gc-7-17-2024, 2024
Short summary
Short summary
Field skills training is an integral part of geoscience education, but long field courses away from home can be barriers to accessing that education and mean that students do not get regular field skills practice. We built the Rock Garden, an on-campus field course at Ghent University, Belgium, to make our field skills training more accessible. Here, we present preliminary data that suggest on-campus field skills training provision can increase students' confidence during real-world fieldwork.
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023, https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary
Short summary
We used 3D-printed building blocks (TotBlocks) in an undergraduate optical mineralogy lab session to illustrate the links between crystal structures and the properties of minerals. Students built mica, pyroxene, and amphibole structures. We observed an improved understanding of cleavage (how minerals break) and pleochroism (how light interacts with minerals), but understanding did not improve with more abstract concepts. TotBlocks hold potential as a teaching tool in mineralogy classrooms.
Philip J. Heron and Jamie A. Williams
Geosci. Commun., 5, 355–361, https://doi.org/10.5194/gc-5-355-2022, https://doi.org/10.5194/gc-5-355-2022, 2022
Short summary
Short summary
Science, technology, engineering, and maths subjects have historically struggled to be inclusive to students from diverse backgrounds. We outline here an outreach course designed to improve critical thinking for people in prison. Based on course feedback, we share advice for working with students who do not engage in formal education – specifically those who have low self-confidence. We focus on how to create a classroom dynamic that is accessible, inclusive and relatable to all students.
Edward G. McGowan and Lewis J. Alcott
Geosci. Commun., 5, 325–337, https://doi.org/10.5194/gc-5-325-2022, https://doi.org/10.5194/gc-5-325-2022, 2022
Short summary
Short summary
The fictional landscape of Hisui from Pokémon Legends: Arceus is inspired by the real-world island of Hokkaido, Japan. This paper illustrates how the game can be used to explore geological concepts including volcanology, economic geology, and hazard mitigation, by comparing in-game features to their real-world counterparts on Hokkaido. Applications from this study include increasing geoscientific interest and facilitating the self-learning or formal teaching of geoscience worldwide.
Clare E. Bond, Jessica H. Pugsley, Lauren Kedar, Sarah R. Ledingham, Marianna Z. Skupinska, Tomasz K. Gluzinski, and Megan L. Boath
Geosci. Commun., 5, 307–323, https://doi.org/10.5194/gc-5-307-2022, https://doi.org/10.5194/gc-5-307-2022, 2022
Short summary
Short summary
Virtual field trips are used to engage students who are unable to go into the field with geological field work. Here, we investigate the perceptions of staff and students before and after a virtual field trip, including the investigation of the success of mitigation measures designed to decrease barriers to engagement and inclusion. We conclude that negative and positive perceptions exist and that effective mitigation measures can be used to improve the student experience.
Caitlyn A. Hall, Sam Illingworth, Solmaz Mohadjer, Mathew Koll Roxy, Craig Poku, Frederick Otu-Larbi, Darryl Reano, Mara Freilich, Maria-Luisa Veisaga, Miguel Valencia, and Joey Morales
Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022, https://doi.org/10.5194/gc-5-275-2022, 2022
Short summary
Short summary
In this manifesto, we offer six points of reflection that higher education geoscience educators can act upon to recognise and unlearn their biases and diversify the geosciences in higher education, complementing current calls for institutional and organisational change. This serves as a starting point to gather momentum to establish community-built opportunities for implementing and strengthening diversity, equity, inclusion, and justice holistically in geoscience education.
Benjamin M. C. Fischer and Alexandru Tatomir
Geosci. Commun., 5, 261–274, https://doi.org/10.5194/gc-5-261-2022, https://doi.org/10.5194/gc-5-261-2022, 2022
Short summary
Short summary
The aim of this paper is to communicate results of our survey giving a first overview and reflects how teaching of hydrology and water-related sciences changed due to COVID-19. Next to many negative aspects for teachers and students, a spirit of optimism, time of change and community initiatives could also be noticed. COVID-19 made it possible to explore novel teaching methods useful for modernizing education and making practical teaching formats accessible to all hydrology and water students.
Mattathias D. Needle, Juliet G. Crider, Jacky Mooc, and John F. Akers
Geosci. Commun., 5, 251–260, https://doi.org/10.5194/gc-5-251-2022, https://doi.org/10.5194/gc-5-251-2022, 2022
Short summary
Short summary
We designed interactive, open-ended video games to simulate field geology to address the learning goals of traditional, in-person exercises for geology students. When these simulations were implemented in college courses, students used virtual versions of standard geology measuring tools to collect data but could also visualize and collect data in new ways (i.e., a jetpack and instantaneous graphing tools). The games were for remote learning, but the tools can also enhance in-person instruction.
Alice Wardle and Sam Illingworth
Geosci. Commun., 5, 221–225, https://doi.org/10.5194/gc-5-221-2022, https://doi.org/10.5194/gc-5-221-2022, 2022
Short summary
Short summary
Participants answered four questions concerning their experience writing a haiku based on a geoscience extract. Data were categorised as being part of the
Task Processor
Task Meaning. The themes involved in the
Task Processwere
Identification of significant information,
Distillation of informationand
Metamorphosis of text, while the themes related to
Task Meaningwere made up of
Enjoyable,
Challenging(which has sub-themes
Frustratingand
Restricted) and
Valuable.
Martin O. Archer, Cara L. Waters, Shafiat Dewan, Simon Foster, and Antonio Portas
Geosci. Commun., 5, 119–123, https://doi.org/10.5194/gc-5-119-2022, https://doi.org/10.5194/gc-5-119-2022, 2022
Short summary
Short summary
Educational research highlights that improved careers education is needed to increase participation in science, technology, engineering, and mathematics (STEM). Current UK careers resources in the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource.
Sharon Bywater-Reyes and Beth Pratt-Sitaula
Geosci. Commun., 5, 101–117, https://doi.org/10.5194/gc-5-101-2022, https://doi.org/10.5194/gc-5-101-2022, 2022
Short summary
Short summary
This paper outlines educational materials appropriate to teach upper division or graduate-level geoscience students how to produce and interpret high-resolution topography data. In a remote implementation, students were able to independently generate high-resolution topographic data products that can be used for interpreting hazards such as landsliding and flooding. Students met course learning outcomes while learning marketable skills used within environmental jobs or research settings.
Nicolas C. Barth, Greg M. Stock, and Kinnari Atit
Geosci. Commun., 5, 17–28, https://doi.org/10.5194/gc-5-17-2022, https://doi.org/10.5194/gc-5-17-2022, 2022
Short summary
Short summary
We present a geology of Yosemite Valley virtual field trip (VFT) and companion exercises produced to substitute for physical field experiences. The VFT is created as an Earth project in Google Earth Web, a versatile format that allows access through a web browser. The module's progression from a VFT and a mapping exercise to geologically reasoned decision-making results in high-quality student work; students find it engaging, enjoyable, and educational.
Madeline S. Marshall and Melinda C. Higley
Geosci. Commun., 4, 461–474, https://doi.org/10.5194/gc-4-461-2021, https://doi.org/10.5194/gc-4-461-2021, 2021
Short summary
Short summary
We created a virtual field trip (VFT) to Grand Ledge, a regionally important suite of outcrops in Michigan, USA. There is a wide range of sedimentary and stratigraphic features encompassed in this locality, making it ideal for a comprehensive virtual field experience. The VFT undertakes all stages of a field project: students investigate outcrops and samples at multiple scales, and students report successfully learning how to interpret complex sedimentary environments
like a real geologist.
Kevin H. Mahan, Michael G. Frothingham, and Ellen Alexander
Geosci. Commun., 4, 421–435, https://doi.org/10.5194/gc-4-421-2021, https://doi.org/10.5194/gc-4-421-2021, 2021
Short summary
Short summary
We describe a virtual education module that encompasses many of the basic requirements of an advanced field exercise, including designing data collection strategies, synthesizing field and laboratory data, and communicating the results. Modules like the one shared here can successfully address some of the key learning objectives that are common to field-based capstone experiences while also fostering a more accessible and inclusive learning environment for all students.
Niki Evelpidou, Anna Karkani, Giannis Saitis, and Evangelos Spyrou
Geosci. Commun., 4, 351–360, https://doi.org/10.5194/gc-4-351-2021, https://doi.org/10.5194/gc-4-351-2021, 2021
Short summary
Short summary
Field trips, despite their significance in students' education, cannot be performed under the COVID-19 pandemic. Here, we evaluate virtual field trips, as an alternative to in situ field work and as a means of preparation for live field trips, considering students' views. They are useful for geoscience students and a good alternative during restriction periods; although they can't substitute real field trips, they can be a valuable additional tool when preparing for a live field trip.
Rachel Bosch
Geosci. Commun., 4, 329–349, https://doi.org/10.5194/gc-4-329-2021, https://doi.org/10.5194/gc-4-329-2021, 2021
Short summary
Short summary
In order to communicate the field-rich, complex concepts of karst geomorphology and hydrogeology to people who may not be able to access in-person field experiences, two virtual learning resources were created. Both karst activities, introductory and advanced, are available online in the Science Education Resource Center (SERC) Online Field Experiences repository. These and other activities from that SERC repository were incorporated into virtual capstone pathways for senior undergrad students.
Solmaz Mohadjer, Sebastian G. Mutz, Matthew Kemp, Sophie J. Gill, Anatoly Ischuk, and Todd A. Ehlers
Geosci. Commun., 4, 281–295, https://doi.org/10.5194/gc-4-281-2021, https://doi.org/10.5194/gc-4-281-2021, 2021
Short summary
Short summary
Lack of access to science-based natural hazards information impedes the effectiveness of school-based disaster risk reduction education. To address this challenge, we created and classroom tested a series of earthquake education videos that were co-taught by school teachers and Earth scientists in the UK and Tajikistan. Comparison of the results reveals significant differences between students' views on the Earth's interior and why and where earthquakes occur.
Martin O. Archer, Jennifer DeWitt, Charlotte Thorley, and Olivia Keenan
Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021, https://doi.org/10.5194/gc-4-147-2021, 2021
Short summary
Short summary
We explore how best to support school students to experience undertaking research-level physics by evaluating provision in the PRiSE framework of
research in schoolsprojects. These experiences are received by students and teachers much more positively than typical forms of outreach. The intensive support offered is deemed necessary, with all elements appearing equally important. We suggest the framework could be adopted at other institutions applied to their own areas of scientific research.
Martin O. Archer
Geosci. Commun., 4, 189–208, https://doi.org/10.5194/gc-4-189-2021, https://doi.org/10.5194/gc-4-189-2021, 2021
Short summary
Short summary
An evaluation of the accessibility and equity of a programme of independent research projects shows that, with the right support from both teachers and active researchers, schools' ability to succeed at undertaking cutting-edge research appears independent of typical societal inequalities.
Adam J. Jeffery, Steven L. Rogers, Kelly L. A. Jeffery, and Luke Hobson
Geosci. Commun., 4, 95–110, https://doi.org/10.5194/gc-4-95-2021, https://doi.org/10.5194/gc-4-95-2021, 2021
Short summary
Short summary
We investigate the potential use of Thinglink, an interactive imagery-based web platform, for the study of rocks, minerals, and fossils under the microscope. We disseminated a prototype which allowed users to view rock samples through a "virtual" microscope and gathered feedback from staff and students. Results were overwhelmingly positive and imply real interest in this style of resource. Such resources could help to enhance accessibility and inclusivity and could complement existing teaching.
Edward G. McGowan and Jazmin P. Scarlett
Geosci. Commun., 4, 11–31, https://doi.org/10.5194/gc-4-11-2021, https://doi.org/10.5194/gc-4-11-2021, 2021
Short summary
Short summary
Results from reviewing 15 popular video games demonstrate a combination of accuracies and inaccuracies that could impact on people’s self-learning of volcanoes. Several volcanic features are represented to varying degrees of accuracy (stratovolcanoes and calderas, lava flows, volcanic ash, and lava bombs), whereas health risks are often inaccurate. Suggested applications of the findings for educational environments are given, such as group projects in open-world games.
Jean-Luc Berenguer, Julien Balestra, Fabrice Jouffray, Fabrice Mourau, Françoise Courboulex, and Jean Virieux
Geosci. Commun., 3, 475–481, https://doi.org/10.5194/gc-3-475-2020, https://doi.org/10.5194/gc-3-475-2020, 2020
Short summary
Short summary
An educational program, focusing on seismological activities at schools and on raising citizen awareness of natural hazards, has been active in France since 1995. Over this quarter century, different generations of students have learned various lessons concerning instrument installation, data recording, and analysis. Analysis of earthquakes has generated a strong awareness of the seismic hazard, especially after the deployment of seismometers at schools.
Cited articles
Abdelmalak, M. M., Gac, S., Faleide, J. I., Shephard, G. E., Tsikalas, F., Polteau, S., Zastrozhnov, D., and Torsvik, T. H.: Quantification and Restoration of the Pre-Drift Extension Across the NE Atlantic Conjugate Margins During the Mid-Permian-Early Cenozoic Multi-Rifting Phases, Tectonics, 42, e2022TC007386, https://doi.org/10.1029/2022TC007386, 2023.
Abdelmalak, M. M., Minakov, A., Faleide, J. I., and Drachev, S. S.: Lomonosov Ridge Composite Tectono-Sedimentary Element, Arctic Ocean, Geological Society, London, Memoirs, 57, M57-2022-2072, https://doi.org/10.1144/M57-2022-72, 2024.
Anell, I., Braathen, A., and Olaussen, S.: The Triassic-Early Jurassic of the northern Barents Shelf: a regional understanding of the Longyearbyen CO2 reservoir, Norw. J. Geol., 94, 83–98, 2014.
Anfinson, O. A., Leier, A. L., Embry, A. F., and Dewing, K.: Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands, GSA Bulletin, 124, 415–430, https://doi.org/10.1130/b30503.1, 2012.
Anfinson, O. A., Odlum, M. L., Piepjohn, K., Poulaki, E. M., Shephard, G. E., Stockli, D. F., Levang, D., Jensen, M. A., and Pavlovskaia, E. A.: Provenance Analysis of the Andrée Land Basin and Implications for the Paleogeography of Svalbard in the Devonian, Tectonics, 41, e2021TC007103, https://doi.org/10.1029/2021TC007103, 2022.
Atchison, C. L. and Libarkin, J. C.: Fostering accessibility in geoscience training programs, Eos, Transactions American Geophysical Union, 94, 400-400, 2013.
Beranek, L. P., Gee, D. G., and Fisher, C. M.: Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides, GSA Bulletin, 132, 1987–2003, https://doi.org/10.1130/b35318.1, 2020.
Betlem, P., Rodes, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A., and Senger, K.: The Svalbox Digital Model Database: a geoscientific window to the High Arctic, Geosphere, 19, 1640–1666, https://doi.org/10.1130/GES02606.1, 2023.
Blakey, R.: Paleotectonic and paleogeographic history of the Arctic region, Atl. Geol., 57, 7–39, https://doi.org/10.4138/atlgeol.2021.002, 2021.
Blischke, A., Brandsdóttir, B., Stoker, M. S., Gaina, C., Erlendsson, Ö., Tegner, C., Halldórsson, S. A., Helgadóttir, H. M., Gautason, B., Planke, S., Koppers, A. A. P., and Hopper, J. R.: Seismic Volcanostratigraphy: The Key to Resolving the Jan Mayen Microcontinent and Iceland Plateau Rift Evolution, Geochem. Geophy. Geosy., 23, e2021GC009948, https://doi.org/10.1029/2021GC009948, 2022.
Bouziat, A., Schmitz, J., Deschamps, R., and Labat, K.: Digital transformation and geoscience education: New tools to learn, new skills to grow, European Geologist European Geologist, 15, 15–19, 2020.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, edited by: Keller, G. R. and Baru, C., Cambridge, Cambridge University Press, 95–113, https://doi.org/10.1017/CBO9780511976308.008, 2011.
Braathen, A., Bergh, S. G., and Maher, H. D., Jr: Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard, Geol. Soc. Am. Bull., 111, 1468–1485, 1999.
Brekke, H. and Banet, C.: The Law of the Seabed: Access, Uses, and Protection of Seabed Resources, in: Chapter 4 Setting Maritime Limits and Boundaries: Experiences from Norway, Brill | Nijhoff, 85–103, ISBN (e-book) 978-90-04-39156-7, 2020.
Brekke, T., Krajewski, K. P., and Hubred, J. H.: Organic geochemistry and petrography of thermally altered sections of the Middle Triassic Botneheia Formation on south-western Edgeøya, Svalbard, Norwegian Petroleum Directorate Bulletin, 11, 111–128, 2014.
Brustnitsyna, E., Ershova, V., Khudoley, A., Maslov, A., Andersen, T., Stockli, D., and Kristoffersen, M.: Age and provenance of the Precambrian Middle Timan clastic succession: Constraints from detrital zircon and rutile studies, Precambrian Res., 371, 106580, https://doi.org/10.1016/j.precamres.2022.106580, 2022.
Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J. A., and Dewez, T. J.: LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models, Geosphere, 15, 222–235, doi.org/10.1130/GES02002.1, 2019.
Colpron, M. and Nelson, J. L.: A Palaeozoic Northwest Passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera, Geol. Soc. Lond. Spec. Publ., 318, 273–307, https://doi.org/10.1144/SP318.10, 2009.
Corfu, F., Polteau, S., Planke, S., Faleide, J. I., Svensen, H., Zayoncheck, A., and Stolbov, N.: U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 150, 1127–1135, 2013.
Dallmann, W.: Geoscience Atlas of Svalbard, Norsk Polarinstitutt Rapportserie, 148, 292, http://hdl.handle.net/11250/2580810 (last access: 7 December 2024), 2015.
Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen, E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S., Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina, T. M., Steel, R. J., and Worsley, D.: Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use, edited by: Dallmann, W. K., Norsk Polarinstitutt, Tromsø, 318 pp., ISBN 8276661661, https://nhm2.uio.no/norges/litho/svalbard/refs.htm (last access: 7 December 2024), 1999.
Dodson, M. H.: Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petr., 40, 259–274, https://doi.org/10.1007/BF00373790, 1973.
Døssing, A., Gaina, C., and Brozena, J. M.: Building and breaking a large igneous province: An example from the High Arctic, Geophys. Res. Lett., 44, 6011–6019, https://doi.org/10.1002/2016GL072420, 2017.
Døssing, A., Gaina, C., Jackson, H. R., and Andersen, O. B.: Cretaceous ocean formation in the High Arctic, Earth Planet. Sc. Lett., 551, 116552, https://doi.org/10.1016/j.epsl.2020.116552, 2020.
Eidesen, P. and Hjelle, S. S.: How to make virtual field guides, and use them to bridge field-and classroom teaching, Authorea [preprint], https://doi.org/10.22541/au.168001737.79628030/v1, 2023.
Ershova, V., Anfinson, O., Prokopiev, A., Khudoley, A., Stockli, D., Faleide, J. I., Gaina, C., and Malyshev, N.: Detrital zircon (U-Th)/He ages from Paleozoic strata of the Severnaya Zemlya Archipelago: Deciphering multiple episodes of Paleozoic tectonic evolution within the Russian High Arctic, J. Geodynam., 119, 210–220, 2018.
Ershova, V., Prokopiev, A., Stockli, D., Kurapov, M., Kosteva, N., Rogov, M., Khudoley, A., and Petrov, E. O.: Provenance of the Mesozoic Succession of Franz Josef Land (North-Eastern Barents Sea): Paleogeographic and Tectonic Implications for the High Arctic, Tectonics, 41, e2022TC007348, https://doi.org/10.1029/2022TC007348, 2022.
Evenchick, C. A., Davis, W. J., Bédard, J. H., Hayward, N., and Friedman, R. M.: Evidence for protracted High Arctic large igneous province magmatism in the central Sverdrup Basin from stratigraphy, geochronology, and paleodepths of saucer-shaped sills, Geol. Soc. Am. Bull., 127, 1366–1390, https://doi.org/10.1130/b31190.1, 2015.
Ford, J. D., Pearce, T., Canosa, I. V., and Harper, S.: The rapidly changing Arctic and its societal implications, WIREs Clim. Change, 12, e735, https://doi.org/10.1002/wcc.735, 2021.
Gaina, C.: Arctic Continental Margins, Continental Rifted Margins 2: Case Examples, 133–148, 2022.
Gaina, C., Werner, S. C., Saltus, R., Maus, S., and the CAMP-GM GROUP: Chapter 3 Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic, Geol. Soc. Lond. Mem., 35, 39–48, https://doi.org/10.1144/m35.3, 2011.
Gee, D.: Caledonides of Scandinavia, Greenland, and Svalbard, Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489, https://doi.org/10.1016/B978-0-12-409548-9.09133-8, 2015.
Gee, D. G., Bogolepova, O. K., and Lorenz, H.: The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia, Geol. Soc. Lond. Mem., 32, 507–520, https://doi.org/10.1144/GSL.MEM.2006.032.01.31, 2006.
Gilmullina, A., Klausen, T. G., Paterson, N. W., Suslova, A., and Eide, C. H.: Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for sediment transport in Arctic basins, Basin Res., 33, 1546–1579, https://doi.org/10.1111/bre.12526, 2021.
Glørstad-Clark, E., Birkeland, E. P., Nystuen, J. P., Faleide, J. I., and Midtkandal, I.: Triassic platform-margin deltas in the western Barents Sea, Mar. Petrol. Geol., 28, 1294–1314, https://doi.org/10.1016/j.marpetgeo.2011.03.006, 2011.
Gold, A. U., Kirk, K., Morrison, D., Lynds, S., Sullivan, S. B., Grachev, A., and Persson, O.: Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data Into the Classroom, Journal of Geoscience Education, 63, 185–197, https://doi.org/10.5408/14-030.1, 2015.
Gold, A. U., Pfirman, S., and Scowcroft, G. A.: The imperative for polar education, Journal of Geoscience Education, 69, 97–99, https://doi.org/10.1080/10899995.2021.1903242, 2021.
Grundvåg, S. A., Marin, D., Kairanov, B., Śliwińska, K. K., Nøhr-Hansen, H., Jelby, M. E., Escalona, A., and Olaussen, S.: The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations, Mar. Petrol. Geol., 86, 834–857, https://doi.org/10.1016/j.marpetgeo.2017.06.036, 2017.
Gunderson, K. L., Holmes, R. C., and Loisel, J.: Recent digital technology trends in geoscience teaching and practice, GSA Today, 30, 39–41, 2020.
Hall, C. A., Illingworth, S., Mohadjer, S., Roxy, M. K., Poku, C., Otu-Larbi, F., Reano, D., Freilich, M., Veisaga, M.-L., Valencia, M., and Morales, J.: GC Insights: Diversifying the geosciences in higher education: a manifesto for change, Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022, 2022.
Harrison, J. C., St-Onge, M. R., Petrov, O., Strelnikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F., and Solli, A.: Geological map of the Arctic, Geological Survey of Canada, Open File, 5816, https://doi.org/10.4095/287868, 2008.
Heininen, L., Everett, K., Padrtova, B., and Reissell, A.: Arctic Policies and Strategies – Analysis, Synthesis, and Trends, International Institute for Applied Systems Analysis, Laxenburg, Austria https://doi.org/10.22022/AFI/11-2019.16175, 2020.
Helland-Hansen, W. and Grundvåg, S.-A.: The Svalbard Eocene-Oligocene (?) Central Basin succession: Sedimentation patterns and controls, Basin Res., 33, 729–753, https://doi.org/10.1111/bre.12492, 2020.
Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K., and Stoupakova, A. V.: Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems, in: Arctic Petroleum Geology, edited by: Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V., and Sørensen, K., 1, The Geological Society, London, 163–195, 2011.
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S.: Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?, Geology, 30, 251–254, https://doi.org/10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2, 2002.
Horota, R. K., Senger, K., Rodes, N., Betlem, P., Smyrak-Sikora, A., Jonassen, M. O., Kramer, D., and Braathen, A.: West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology, J. Struct. Geol., 167, 104781, https://doi.org/10.1016/j.jsg.2022.104781, 2023.
Horota, R. K., Senger, K., Smyrak-Sikora, A., Furze, M., Retelle, M., Kloet, M. A. V., and Jonassen, M. O.: VR Svalbard – a photosphere-based atlas of a high Arctic geo-landscape, First Break, 42, 35–42, https://doi.org/10.3997/1365-2397.fb2024029, 2024.
Hosseini, K., Matthews, K. J., Sigloch, K., Shephard, G. E., Domeier, M., and Tsekhmistrenko, M.: SubMachine: Web-Based Tools for Exploring Seismic Tomography and Other Models of Earth's Deep Interior, Geochem. Geophy. Geosy., 19, 1464–1483, https://doi.org/10.1029/2018GC007431, 2018.
Iyer, K., Svensen, H., and Schmid, D. W.: SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions, Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, 2018.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jones, M. T., Augland, L. E., Shephard, G. E., Burgess, S. D., Eliassen, G. T., Jochmann, M. M., Friis, B., Jerram, D. A., Planke, S., and Svensen, H. H.: Constraining shifts in North Atlantic plate motions during the Palaeocene by U-Pb dating of Svalbard tephra layers, Sci. Rep., 7, 6822, https://doi.org/10.1038/s41598-017-06170-7, 2017.
Khudoley, A. K., Sobolev, N. N., Petrov, E. O., Ershova, V. B., Makariev, A. A., Makarieva, E. V., Gaina, C., and Sobolev, P. O.: A reconnaissance provenance study of Triassic–Jurassic clastic rocks of the Russian Barents Sea, GFF, 141, 263–271, https://doi.org/10.1080/11035897.2019.1621372, 2019.
Klausen, T. G., Nyberg, B., and Helland-Hansen, W.: The largest delta plain in Earth's history, Geology, 47, 470–474, https://doi.org/10.1130/G45507.1, 2019.
Kristoffersen, Y.: Chapter 45 Geophysical exploration of the Arctic Ocean: the physical environment, survey techniques and brief summary of knowledge, Geol. Soc. Lond. Mem., 35, 685–702, https://doi.org/10.1144/m35.45, 2011.
Kristoffersen, Y., Nilsen, E. H., and Hall, J. K.: The High Arctic Large Igneous Province: first seismic-stratigraphic evidence for multiple Mesozoic volcanic pulses on the Lomonosov Ridge, central Arctic Ocean, J. Geol. Soc., 180, jgs2022-2153, https://doi.org/10.1144/jgs2022-153, 2023.
Krumpen, T., von Albedyll, L., Goessling, H. F., Hendricks, S., Juhls, B., Spreen, G., Willmes, S., Belter, H. J., Dethloff, K., Haas, C., Kaleschke, L., Katlein, C., Tian-Kunze, X., Ricker, R., Rostosky, P., Rückert, J., Singha, S., and Sokolova, J.: MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years, The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, 2021.
Kurapov, M., Ershova, V., Khudoley, A., Luchitskaya, M., Stockli, D., Makariev, A., Makarieva, E., and Vishnevskaya, I.: Latest Permian–Triassic magmatism of the Taimyr Peninsula: New evidence for a connection to the Siberian Traps large igneous province, Geosphere, 17, 2062–2077, https://doi.org/10.1130/ges02421.1, 2021.
Lebedeva-Ivanova, N., Gaina, C., Minakov, A., and Kashubin, S.: ArcCRUST: Arctic Crustal Thickness From 3-D Gravity Inversion, Geochem. Geophy. Geosy., 20, 3225–3247, https://doi.org/10.1029/2018GC008098, 2019.
Lord, G., Janocha, J., Rodes, N., and Betlem, P.: Svalbox-DOM_2020-0015_Lagmannstoppen-East, Zenodo [data set], https://doi.org/10.5281/zenodo.5700918, 2021.
Lundschien, B. A., Høy, T., and Mørk, A.: Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data, Norwegian Petroleum Directorate Bulletin, 11, 3–20, 2014.
Malm, R. H.: Developing an Arctic Geology course: exploring the role of fieldwork in a challenging learning space, Uniped, 44, 178–189, https://doi.org/10.18261/issn.1893-8981-2021-03-04, 2021.
Maurer, M. E.: likertplot.com – Plot Likert Scales”, http://likertplot.com/ (last access: 7 December 2024), 2013.
McCaffrey, K., Jones, R., Holdsworth, R., Wilson, R., Clegg, P., Imber, J., Holliman, N., and Trinks, I.: Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork, J. Geol. Soc., 162, 927–938, 2005.
Midtkandal, I., Faleide, J. I., Faleide, T. S., Serck, C. S., Planke, S., Corseri, R., Dimitriou, M., and Nystuen, J. P.: Lower Cretaceous Barents Sea strata: epicontinental basin configuration, timing, correlation and depositional dynamics, Geol. Mag., 157, 458–476, https://doi.org/10.1017/S0016756819000918, 2019.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A., and Freiman, S. I.: Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data, Tectonophysics, 746, 64–82, https://doi.org/10.1016/j.tecto.2017.09.006, 2018.
Nordregio: Indigenous population in the Arctic, https://nordregio.org/maps/indigenous-population-in-the-arctic/ (last access: 7 December 2024), 2019.
Olaussen, S., Grundvåg, S.-A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E. P., Lord, G., Mørk, A., Osmundsen, P. T., Smyrak-Sikora, A., and Stemmerik, L.: Svalbard Composite Tectono-Sedimentary Element, Barents Sea, Geol. Soc. Lond. Mem., 57, M57-2021-2036, https://doi.org/10.1144/M57-2021-36, 2024.
Petrov, O. V., Pubellier, M., Shokalsky, S. P., Morozov, A. F., Kazmin, Y. B., Kashubin, S. N., Vernikovsky, V. A., Smelror, M., Brekke, H., Kaminsky, V. D., and Pospelov, I. I.: New Tectonic Map of the Arctic, in: Tectonics of the Arctic, edited by: Petrov, O. V., and Smelror, M., Springer International Publishing, Cham, 1–27, https://doi.org/10.1130/2018.2541(08), 2021.
Piepjohn, K., von Gosen, W., and Tessensohn, F.: The Eurekan deformation in the Arctic: an outline, J. Geol. Soc., 173, 1007–1024, 2016.
Proelss, A.: Governing the Arctic Ocean, Nat. Geosci., 2, 310–313, https://doi.org/10.1038/ngeo510, 2009.
Prokopiev, A. V., Ershova, V. B., Anfinson, O., Stockli, D., Powell, J., Khudoley, A. K., Vasiliev, D. A., Sobolev, N. N., and Petrov, E. O.: Tectonics of the New Siberian Islands archipelago: Structural styles and low-temperature thermochronology, J. Geodynam., 121, 155–184, https://doi.org/10.1016/j.jog.2018.09.001, 2018.
Prokopiev, A. V., Ershova, V. B., and Stockli, D. F.: Provenance of the Devonian–Carboniferous clastics of the southern part of the Prikolyma terrane (Verkhoyansk–Kolyma orogen) based on U–Pb dating of detrital zircons, GFF, 141, 272–278, https://doi.org/10.1080/11035897.2019.1621373, 2019.
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223–1236, https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
Rogov, M. A., Ershova, V. B., Shchepetova, E. V., Zakharov, V. A., Pokrovsky, B. G., and Khudoley, A. K.: Earliest Cretaceous (late Berriasian) glendonites from Northeast Siberia revise the timing of initiation of transient Early Cretaceous cooling in the high latitudes, Cretaceous Res., 71, 102–112, 2017.
Rogov, M. M., Ershova, V., Gaina, C., Vereshchagin, O., Vasileva, K., Mikhailova, K., and Krylov, A.: Glendonites throughout the Phanerozoic, Earth-Sci. Rev., 241, 104430, https://doi.org/10.1016/j.earscirev.2023.104430, 2023a.
Rogov, M. A., Panchenko, I. V., Augland, L. E., Ershova, V. B., and Yashunsky, V. Y.: The first CA-ID-TIMS U-Pb dating of the Tithonian/Berriasian boundary beds in a Boreal succession, Gondwana Res., 118, 165–173, https://doi.org/10.1016/j.gr.2023.02.010, 2023b.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global multi‐resolution topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332, 2009.
Saltus, R. W., Miller, E. L., Gaina, C., and Brown, P. J.: Chapter 4 Regional magnetic domains of the Circum-Arctic: a framework for geodynamic interpretation, Geol. Soc. Lond. Mem., 35, 49–60, https://doi.org/10.1144/m35.4, 2011.
Schaeffer, A. J. and Lebedev, S.: Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417–449, https://doi.org/10.1093/gji/ggt095, 2013.
Schneider, D. A., Faehnrich, K., Majka, J., Manecki, M., Piepjohn, K., Strauss, J. V., Reinhardt, L., and McClelland, W. C.: 40Ar/39Ar geochronologic evidence of Eurekan deformation within the West Spitsbergen Fold and Thrust Belt, in: Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens, Geol. Soc. Am., https://doi.org/10.1130/2018.2541(08), 2019.
Senger, K. and Galland, O.: Stratigraphic and Spatial extent of HALIP Magmatism in central Spitsbergen, Geochem. Geoph. Geosy., 23, e2021GC010300, https://doi.org/10.1029/2021GC010300, 2022.
Senger, K. and Shephard, G.: Arctic Tectonics and Volcanism: a multi-scale, multidisciplinary educational approach (Petrel and GPlates data package), Zenodo [data set], https://doi.org/10.5281/zenodo.10259590, 2023.
Senger, K. and Nordmo, I.: Using digital field notebooks in geoscientific learning in polar environments, Journal of Geoscience Education, 69, 166–177, https://doi.org/10.1080/10899995.2020.1725407, 2021.
Senger, K., Planke, S., Polteau, S., Ogata, K., and Svensen, H.: Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway, Norw. J. Geol., 94, 155–169, 2014a.
Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S.: Late Mesozoic magmatism in Svalbard: A review, Earth-Sci. Rev., 139, 123–144, 2014b.
Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C. H., Flaig, P. P., Forien, M., Galland, O., Gonzaga Jr., L., Jensen, M., Kurz, T., Lecomte, I., Mair, K., Malm, R., Mulrooney, M., Naumann, N., Nordmo, I., Nolde, N., Ogata, K., Rabbel, O., Schaaf, N. W., and Smyrak-Sikora, A.: Using digital outcrops to make the high Arctic more accessible through the Svalbox database, Journal of Geoscience Education, 69, 123–137, https://doi.org/10.1080/10899995.2020.1813865, 2021a.
Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R. K., Buckley, S. J., Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha, J., Ogata, K., Kuckero, L., Johannessen, R. M., Lecomte, I., Cohen, S. M., and Olaussen, S.: Teaching with digital geology in the high Arctic: opportunities and challenges, Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, 2021b.
Senger, K., Betlem, P., Birchall, T., Gonzaga Jr., L., Grundvåg, S.-A., Horota, R. K., Laake, A., Kuckero, L., Mørk, A., Planke, S., Rodes, N., and Smyrak-Sikora, A.: Digitising Svalbard's Geology: the Festningen Digital Outcrop Model, First Break, 40, 47–55, https://doi.org/10.3997/1365-2397.fb2022021, 2022.
Senger, K., Kulhanek, D., Jones, M. T., Smyrak-Sikora, A., Planke, S., Zuchuat, V., Foster, W. J., Grundvåg, S.-A., Lorenz, H., Ruhl, M., Sliwinska, K. K., Vickers, M. L., and Xu, W.: Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report, Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, 2023.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shephard, G. E., Müller, R. D., and Seton, M.: The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure, Earth-Sci. Rev., 124, 148–183, 2013.
Smyrak-Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., and Braathen, A.: Sedimentary architecture during Carboniferous rift initiation–the arid Billefjorden Trough, Svalbard, J. Geol. Soc., 176, 225–252, 2019.
Straume, E. O., Gaina, C., Medvedev, S., and Nisancioglu, K. H.: Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways, Gondwana Res., 86, 126–143, https://doi.org/10.1016/j.gr.2020.05.011, 2020.
Straume, E. O., Nummelin, A., Gaina, C., and Nisancioglu, K. H.: Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways, P. Natl. Acad. Sci. USA, 119, e2115346119, https://doi.org/10.1073/pnas.2115346119, 2022.
Struijk, E. L. M., Tesauro, M., Lebedeva-Ivanova, N. N., Gaina, C., Beekman, F., and Cloetingh, S. A. P. L.: The Arctic lithosphere: Thermo-mechanical structure and effective elastic thickness, Global Planet. Change, 171, 2–17, https://doi.org/10.1016/j.gloplacha.2018.07.014, 2018.
Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, 2004.
Tavani, S., Billi, A., Corradetti, A., Mercuri, M., Bosman, A., Cuffaro, M., Seers, T., and Carminati, E.: Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones, Earth-Sci. Rev., 227, 103969, https://doi.org/10.1016/j.earscirev.2022.103969, 2022.
Topp-Jørgensen, E., Holste, S., Duveau, S. D., Ibáñez, M. M., Vural, D., Duncan, R., Gremion, G., Hancock, S., Rosenbaum, P., Burmenko, T., and Thomas, F. A.: INTERACT Reducing CO2 Emissions in Arctic Science, INTERACT, https://eu-interact.org/app/uploads/2022/10/INTERACTCo2-reduction-guidebook_FINAL-WORK_DPS.pdf (last access: 7 December 2024), 2022.
Vasileva, K., Zaretskaya, N., Ershova, V., Rogov, M., Stockli, L. D., Stockli, D., Khaitov, V., Maximov, F., Chernyshova, I., Soloshenko, N., Frishman, N., Panikorovsky, T., and Vereshchagin, O.: New model for seasonal ikaite precipitation: Evidence from White Sea glendonites, Mar. Geol., 449, 106820, https://doi.org/10.1016/j.margeo.2022.106820, 2022.
Whitmeyer, S. J., Atchison, C., and Collins, T. D.: Using Mobile Technologies to Enhance Accessibility and Inclusion in Field-Based Learning, GSA Today, 30, 4–10, https://doi.org/10.1130/GSATG462A.1, 2020.
Wignall, P. B.: Large igneous provinces and mass extinctions, Earth-Sci. Rev., 53, 1–33, https://doi.org/10.1016/s0012-8252(00)00037-4, 2001.
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
The article describes a course that we have developed at the University Centre in Svalbard that...
Altmetrics
Final-revised paper
Preprint