Articles | Volume 7, issue 3
https://doi.org/10.5194/gc-7-215-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-7-215-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The weather today rocks or sucks for my tree: exploring the understanding of climate impacts on forests at high school level through tweets
Institut für Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 91058 Erlangen, Germany
Jan C. Schubert
CORRESPONDING AUTHOR
Lehrstuhl für Didaktik der Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 90478 Nuremberg, Germany
Annette Debel
Institut für Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 91058 Erlangen, Germany
Steffen Höhnle
Lehrstuhl für Didaktik der Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 90478 Nuremberg, Germany
Kathy Steppe
Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
Sibille Wehrmann
Institut für Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 91058 Erlangen, Germany
Achim Bräuning
Institut für Geographie, Friedrich-Alexander-Universität Erlangen–Nürnberg (FAU), 91058 Erlangen, Germany
Related authors
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
David Ibel, Thomas Mölg, and Christian Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-415, https://doi.org/10.5194/egusphere-2025-415, 2025
Short summary
Short summary
As (tropical) glaciers retreat on a global scale, we analysed area changes of the Puncak Jaya glaciers in South-East Asia on West Papua, Indonesia using high resolution optical satellite imagery and historical glacier accounts from analogue maps. The results show a decrease of total glacier surface area by more than 99 % since 1850 and by 64 % since the last survey in 2018, with current glacier area (in 2024) amounting to 0.165 km2. Puncak Jaya glaciers will likely disappear around 2030.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary
Short summary
As part of a recent project that aims to investigate the impact of climate change on forest ecosystems in Bavaria, we developed a high-resolution atmospheric dataset, BAYWRF, for this region that covers the period of September 1987 to August 2018. The data reproduce observed variability in recent meteorological conditions well and provide a useful tool for linking large-scale climate change to local impacts on economic, societal, ecological, and agricultural processes.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
David Ibel, Thomas Mölg, and Christian Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-415, https://doi.org/10.5194/egusphere-2025-415, 2025
Short summary
Short summary
As (tropical) glaciers retreat on a global scale, we analysed area changes of the Puncak Jaya glaciers in South-East Asia on West Papua, Indonesia using high resolution optical satellite imagery and historical glacier accounts from analogue maps. The results show a decrease of total glacier surface area by more than 99 % since 1850 and by 64 % since the last survey in 2018, with current glacier area (in 2024) amounting to 0.165 km2. Puncak Jaya glaciers will likely disappear around 2030.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Jeroen D. M. Schreel, Kathy Steppe, Adam B. Roddy, and María Poca
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-13, https://doi.org/10.5194/hess-2023-13, 2023
Manuscript not accepted for further review
Short summary
Short summary
In recent years, multiple studies have reported a discrepancy between the isotopic composition of water in stems and soil. We hypothesize that isotopically enriched water from the canopy is flowing into the stem (“back-flow of leaf water”; BFLW). Using a meta-analysis on the occurrence of aforementioned isotopic discrepancy, we modelled the effects of BFLW. This modeling approach presents compelling evidence that BFLW can significantly influence the isotopic signature of plant xylem water.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Nilendu Singh, Mayank Shekhar, Bikash Ranjan Parida, Anil K. Gupta, Kalachand Sain, Santosh K. Rai, Achim Bräuning, Vikram Sharma, and Reet Kamal Tiwari
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-53, https://doi.org/10.5194/cp-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
Tree-ring isotope records from central Himalaya provided a basis for century-scale approximation on hydroclimate and glacier interaction. Multi-species isotopic coherencies specify an abrupt phase-shift since the 1960s and the governing role of winter-westerlies in regional ice-mass variability. Radiative forcing and glacier valley-scale vegetation trend analyses indicate that attribution of ice-mass to large-scale dynamics is likely to be modulated by local vegetation changes.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary
Short summary
As part of a recent project that aims to investigate the impact of climate change on forest ecosystems in Bavaria, we developed a high-resolution atmospheric dataset, BAYWRF, for this region that covers the period of September 1987 to August 2018. The data reproduce observed variability in recent meteorological conditions well and provide a useful tool for linking large-scale climate change to local impacts on economic, societal, ecological, and agricultural processes.
Catrin Stadelmann, Johannes Jakob Fürst, Thomas Mölg, and Matthias Braun
The Cryosphere, 14, 3399–3406, https://doi.org/10.5194/tc-14-3399-2020, https://doi.org/10.5194/tc-14-3399-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro are unique indicators for climatic changes in the tropical midtroposphere of Africa. A history of severe glacier area loss raises concerns about an imminent future disappearance. Yet the remaining ice volume is not well known. Here, we reconstruct ice thickness maps for the two largest remaining ice bodies to assess the current glacier state. We believe that our approach could provide a means for a glacier-specific calibration of reconstructions on different scales.
Cited articles
BayTreeNet Neuschönau [BayTreeNet]: Hello. As hoped for yesterday, today was great weather, sunshine all day. My diameter has grown by quite a bit and my sap flow has also increased. I hope you had a great day like me, Twitter, https://x.com/6baytreenet?s=43 (last access: 23 November 2023), posted: 19:30, 2 June 2021.
Bissolli, P. and Dittmann, E.: The objective weather type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations, Meteorol. Z., 10, 253–260, https://doi.org/10.1127/0941-2948/2001/0010-0253, 2001.
Boyes, E. and Stanisstreet, M.: The “Greenhouse Effect”: children's perceptions of causes, consequences and cures, Int. J. Sci. Educ., 15, 531–552, https://doi.org/10.1080/0950069930150507, 1993.
Braun, V. and Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol., 3, 77–101, https://doi.org/10.1191/1478088706qp063oa, 2006.
Bräuning, A., Debel, A., Collier, E., Höhnle, S., Mölg, T., Schubert, J.C., Thieroff, B., and Wehrmann, S.: BayTreeNet: Sprechende Bäume als Schnittstelle von Klimadynamik, Dendroökologie und Bildung für nachhaltige Entwicklung in Bayern, Mitt. der Fränk. Geogr. Ges., 67, 177–188, 2022.
Choi, S., Niyogi, D., Shepardson, D. P., and Charusombat, U.: Do Earth and Environmental Science Textbooks Promote Middle and High School Students' Conceptual Development About Climate Change?, B. Am. Meteorol. Soc., 91, 889–898, https://doi.org/10.1175/2009BAMS2625.1, 2010.
Clark, R. T. and Brown, S. J.: Influences of Circulation and Climate Change on European Summer Heat Extremes, J. Climate, 26, 9621–9632, https://doi.org/10.1175/JCLI-D-12-00740.1, 2013.
Collier, E. and Mölg, T.: BAYWRF: a high-resolution present-day climatological atmospheric dataset for Bavaria, Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, 2020.
Davi, N., Pringle, P., Fiondella, F., Lockwood, J., and Oelkers, R.: Online labs to introduce undergraduate students to scientific concepts and practices in tree-ring research, J. Geosci. Educ., 70, 73–84, https://doi.org/10.1080/10899995.2021.1927567, 2022.
Debel, A., Meier, W. J. H., and Bräuning, A.: Climate signals for growth variations of F. sylvatica, P. abies, and P. sylvestris in southeast Germany over the past 50 years, Forests, 12, 1433, https://doi.org/10.3390/f12111433, 2021.
Deslauriers, A., Rossi, S., and Anfodillo, T.: Dendrometer and intra-annual tree growth: What kind of information can be inferred?, Dendrochronologia, 25, 113–124, https://doi.org/10.1016/j.dendro.2007.05.003, 2007.
Dove, J.: Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion and Acid Rain, Environ. Educ. Res., 2, 89–100, https://doi.org/10.1080/1350462960020108, 1996.
Drew, D. and Downes, G. M.: The use of precision dendrometers in research on daily stem size and wood property variation: A review, Dendrochronologia, 27, 159–172, https://doi.org/10.1016/j.dendro.2009.06.008, 2009.
Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M., and Leuschner, C.: European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany), Trees, 31, 673–686, https://doi.org/10.1007/s00468-016-1499-x, 2017.
FAU Erlangen-Nürnberg: baytreenet, https://baytreenet.de/, last access: 30 July 2024.
Friedrichs, D. A., Trouet, V., Büntgen, U., Frank, D. C., Esper, J., Neuwirth, B., and Löffler, J.: Species-specific climate sensitivity of tree growth in Central-West Germany, Trees, 23, 729–739, https://doi.org/10.1007/s00468-009-0315-2, 2009.
Herrera-Lormendez, P., Mastrantonas, N., Douville, H., Hoy, A., and Matschullat, J.: Synoptic circulation changes over Central Europe from 1900 to 2100: Reanalyses and Coupled Model Intercomparison Project phase 6, Int. J. Climatol., 42, 4062–4077, https://doi.org/10.1002/joc.7481, 2022.
Hess, P. and Brezowsky, H.: Katalog der Grosswetterlagen Europas, Berichte des Deutschen Wetterdienstes in der US-Zone, 39 pp., 1952.
James, P. M.: An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe, Theor. Appl. Climatol., 88, 17–42, https://doi.org/10.1007/s00704-006-0239-3, 2007.
Kraus, C., Zang, C., and Menzel, A.: Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps, Eur. J. Forest Res., 135, 1011–1023, https://doi.org/10.1007/s10342-016-0990-7, 2016.
Lazo, J. K., Morss, R. E., and Demuth, J. L.: 300 Billion served. Sources, Perceptions, Uses, and Values of Weather Forecasts, B. Am. Meteorol. Soc., 90, 785–798, https://doi.org/10.1175/2008BAMS2604.1, 2009.
Leiserowitz, A., Roser-Renouf, C., Marlon, J., and Maibach, E.: Global Warming's Six Americas: a review and recommendations for climate change communication, Curr. Opin. Behav. Sci., 42, 97–103, https://doi.org/10.1016/j.cobeha.2021.04.007, 2021.
Loikith, P. C., Lintner, B. R., and Sweeney, A.: Characterizing Large-Scale Meteorological Patterns and Associated Temperature and Precipitation Extremes over the Northwestern United States Using Self-Organizing Maps, J. Climate, 30, 2829–2847, https://doi.org/10.1175/JCLI-D-16-0670.1, 2017.
Podschuweit, S. and Bernholt, S.: Investigating network coherence to assess students' conceptual understanding of energy, Educ. Sci., 10, 1–20, https://doi.org/10.3390/educsci10040103, 2020.
Post, P., Truija V., and Tuulik, J.: Circulation weather types and their influence on temperature and precipitation in Estonia, Boreal Environ. Res., 7, 281–289, 2002.
Psistaki, K., Paschalidou, A. K., and McGregor, G.: Weather patterns and all-cause mortality in England, UK, Int. J. Biometeorol., 64, 123–136, https://doi.org/10.1007/s00484-019-01803-0, 2020.
Riediger, U. and Gratzki, A.: Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe, Meteorol. Z., 23, 231–252, https://doi.org/10.1127/0941-2948/2014/0519, 2014.
Smith, D. M. and Allen, S. J.: Measurement of sap flow in plant stems, J. Exp. Bot., 47, 1833–1844. https://doi.org/10.1093/jxb/47.12.1833, 1996.
Steppe, K., De Pauw, D. J. W., Lemeur, R., and Vanrolleghem, P. A.: A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth, Tree Physiol., 26, 257–273, 2006.
Steppe, K., De Pauw, D. J. W., Doody, T. M., and Teskey, R. O.: A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods, Agr. Forest Meteorol., 150, 1046–1056, https://doi.org/10.1016/j.agrformet.2010.04.004, 2010.
Steppe, K., Sterck, F., and Deslauriers, A.: Diel growth dynamics in tree stems: linking anatomy and ecophysiology, Trends Plant Sci., 20, 335–343, https://doi.org/10.1016/j.tplants.2015.03.015, 2015.
Steppe, K., von der Crone, Jonas, S., and de Pauw, D. J. W.: TreeWatch.net: A Water and Carbon Monitoring and Modeling Network to Assess Instant Tree Hydraulics and Carbon Status, Frontiers Plant Sci., 7, 993, https://doi.org/10.3389/fpls.2016.00993, 2016.
Vandegehuchte, M. W. and Steppe, K.: Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements, New Phytol., 196, 306–317, https://doi.org/10.1111/j.1469-8137.2012.04237.x, 2012.
Werner, P. C. and Gerstengarbe, F. W.: PIK Report, Katalog der Großwetterlagen Europas (1881–2009), Potsdam-Institut FÜR Klimafolgenforschung, https://www.pik-potsdam.de/en/output/publications/pikreports/.files/pr119.pdf (last access: 11 September 2024), 2010.
Witherby, A. E. and Carpenter, S. K.: The rich-get-richer effect: Prior knowledge predicts new learning of domain-relevant information, J. Exp. Psychol. Learn., 48, 483–498, https://doi.org/10.1037/xlm0000996, 2022.
Zong, L., Yang, Y., Xia, H., Gao, M., Sun, Z., Zheng, Z., Li, X., Ning, G., Li, Y., and Lolli, S.: Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: role of synoptic weather pattern and urbanization, Atmos. Chem. Phys., 22, 6523–6538, https://doi.org/10.5194/acp-22-6523-2022, 2022.
Short summary
We examine the understanding of weather and climate impacts on forest health in high school students. Climate physics, tree ring science, and educational research collaborate to provide an online platform that captures the students’ observations, showing they translate the measured weather and basic tree responses well. However, students hardly ever detect the causal connections. This result will help refine future classroom concepts and public climate change communication on changing forests.
We examine the understanding of weather and climate impacts on forest health in high school...
Altmetrics
Final-revised paper
Preprint