Articles | Volume 4, issue 4
https://doi.org/10.5194/gc-4-461-2021
https://doi.org/10.5194/gc-4-461-2021
Research article
 | 
08 Oct 2021
Research article |  | 08 Oct 2021

Multi-scale virtual field experience: sedimentology and stratigraphy of Grand Ledge, Michigan, USA

Madeline S. Marshall and Melinda C. Higley

Related subject area

Subject: Geoscience education | Keyword: Pedagogy
GC Insights: The crystal structures behind mineral properties – a case study of using TotBlocks in an undergraduate optical mineralogy lab
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023,https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary
Building confidence in STEM students through breaking (unseen) barriers
Philip J. Heron and Jamie A. Williams
Geosci. Commun., 5, 355–361, https://doi.org/10.5194/gc-5-355-2022,https://doi.org/10.5194/gc-5-355-2022, 2022
Short summary
The potential for using video games to teach geoscience: learning about the geology and geomorphology of Hokkaido (Japan) from playing Pokémon Legends: Arceus
Edward G. McGowan and Lewis J. Alcott
Geosci. Commun., 5, 325–337, https://doi.org/10.5194/gc-5-325-2022,https://doi.org/10.5194/gc-5-325-2022, 2022
Short summary
Learning outcomes, learning support, and cohort cohesion on a virtual field trip: an analysis of student and staff perceptions
Clare E. Bond, Jessica H. Pugsley, Lauren Kedar, Sarah R. Ledingham, Marianna Z. Skupinska, Tomasz K. Gluzinski, and Megan L. Boath
Geosci. Commun., 5, 307–323, https://doi.org/10.5194/gc-5-307-2022,https://doi.org/10.5194/gc-5-307-2022, 2022
Short summary
GC Insights: Diversifying the geosciences in higher education: a manifesto for change
Caitlyn A. Hall, Sam Illingworth, Solmaz Mohadjer, Mathew Koll Roxy, Craig Poku, Frederick Otu-Larbi, Darryl Reano, Mara Freilich, Maria-Luisa Veisaga, Miguel Valencia, and Joey Morales
Geosci. Commun., 5, 275–280, https://doi.org/10.5194/gc-5-275-2022,https://doi.org/10.5194/gc-5-275-2022, 2022
Short summary

Cited articles

Anderton, R.: Clastic facies models and facies analysis, in: Sedimentology: Recent Developments and Applied Aspects, edited by: Brenchley, P. J. and Williams, B. P. J., Geological Society, London, Special Publications, Blackwell Scientific Publications, 18, 31–47, 1985. 
AgiSoft Metashape Professional (Version 1.6.3), Software, available at: https://www.agisoft.com/downloads/installer/ (last access: 22 September 2021), 2020. 
Arthurs, L.: Bringing the Field to Students during COVID-19 and Beyond, GSAT, 31, 28–29, https://doi.org/10.1130/GSATG478GW.1, 2021. 
Bond, C. E. and Cawood, A. J.: A role for virtual outcrop models in blended learning – improved 3D thinking and positive perceptions of learning, Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, 2021. 
Bristow, C.: Observe, Record, Interpret: some examples of teaching sedimentology by distance learning including virtual graphic logs, Sedimentary Record, 18, 4–11, https://doi.org/10.2110/sedred.2020.2.4, 2020. 
Download
Short summary
We created a virtual field trip (VFT) to Grand Ledge, a regionally important suite of outcrops in Michigan, USA. There is a wide range of sedimentary and stratigraphic features encompassed in this locality, making it ideal for a comprehensive virtual field experience. The VFT undertakes all stages of a field project: students investigate outcrops and samples at multiple scales, and students report successfully learning how to interpret complex sedimentary environments like a real geologist.
Altmetrics
Final-revised paper
Preprint