Cavadas, B., Correia, M., Mestrinho, N., and Santos, R.:
CreativeLab_Sci&Math
| Work Dynamics and
Pedagogical Integration in Science and Mathematics, Interacções,
15, 6–22, https://doi.org/10.25755/int.18786, 2019.
COL – Commonwealth of Learning: Keeping the doors of learning open COVID-19, available at:
https://www.col.org/resources/keeping-doors-learning-open-covid-19, last access: 10 May 2020.
Correia, G. M. P.: Paleomagnetismo e tectónica de placas:
Desenvolvimento e avaliação de modelos para o ensino (Tese de
Doutoramento), Departamento de Ciências da Terra, Faculdade de
Ciências e Tecnologia da Universidade de Coimbra, Portugal, 1–405, 2014.
Dodick, J. and Orion, N.: Building an understanding of geologic time: A
cognitive synthesis of the “macro” and “micro” scales of time, Special
Paper of the Geological Society of America, 413, 77–93, 2006.
Dolphin, G. and Benoit, W.: Students' mental model development during
historically contextualized inquiry: How the “Tectonic Plate” metaphor
impeded the process, Int. J. Sci. Educ., 38,
276–297, https://doi.org/10.1080/09500693.2016.1140247, 2016.
Droui, M. and El Hajjami, A.: Simulations informatiques en enseignement des
sciences: apports et limites, EpiNet: Revue électronique de l'EPI, 164,
2014.
Faustino, P., Gomes, C. R., Abrantes, P. and Rola, A.: Historical evolution
of plate tectonics and its cartography until the end of the 1960s, and
implications in the teaching of earth sciences in Portugal, Memorias R. Soc.
Esp. Hist. Nat., 2, 245–285, 2017.
Ferreira, R.: O Google Earth na aprendizagem da “Tectónica de Placas”,
numa turma de 7.
∘ ano de escolaridade (Relatório de
Projeto do Mestrado em Ciências da Educação –
Especialização em Utilização Pedagógica das TIC), Escola
Superior de Educação e Ciências Sociais, Instituto
Politécnico de Leiria, Portugal, 1–185, 2016.
Francek, M.: A compilation and review of over 500 geoscience misconceptions.
Int. J. Sci. Educ., 35, 31–64,
https://doi.org/10.1080/09500693.2012.736644, 2013.
Frankel, H. R.: The Continental Drift Controversy, Volume I: Wegener and the
Early Debate, Cambridge University Press, 1–604, 2012a.
Frankel, H. R.: The Continental Drift Controversy, Volume II: Paleomagnetism
and confirmation of drift, Cambridge University Press, 1–525, 2012b.
Frankel, H. R.: The Continental Drift Controversy, Volume IV: Evolution into
Plate Tectonics, Cambridge University Press, 1–675, 2012c.
Gleen, W. H.: Suggestions for teaching the principles of continental drift
in the elementary school, J. Geogr., 76, 57–63,
https://doi.org/10.1080/00221347708980883, 1977.
Hensberry, K. K. R., Paul, A. J., Moore, E. B., Podolefsky, N. S., and
Perkins, K. K.: PhET Interactive Simulations: New tools to achieve common
core mathematics standards, edited by: Polly, D., Common Core Mathematics
Standards and Implementing Digital Technologies, IGI Global, 147–167, 2013.
Hoban, G., Loughran, J., and Nielsen, W.: Slowmation: preservice elementary
teachers representing science knowledge through creating multimodal digital
animations, J. Res. Sci. Teach., 48, 985–1009,
https://doi.org/10.1002/tea.20436, 2011.
Lancaster, K. V., Moore, E. B., Parson, R., and Perkins, K.: Insights from
using PhET's design principles for interactive chemistry simulations, edited by: Suits, J.
and Sanger, M., Pedagogic Roles of Animations and
Simulations in Chemistry Courses, ACS Symposium Series, 97–126, 2013.
Marques, L. and Thompson, D.: Misconceptions and conceptual changes
concerning continental drift and plate tectonics among Portuguese students
aged 16-17, Res. Sci. Tech. Educ., 15, 195–222,
https://doi.org/10.1080/0263514970150206, 1997.
McKagan, S. B., Perkins, K. K., Dubson, M., Malley, C., Reid, S., LeMaster,
R., and Wieman, C. E.: Developing and researching PhET simulations for
teaching quantum mechanics, Am. J. Phys., 76, 406,
https://doi.org/10.1119/1.2885199, 2008.
Mills, R., Tomas, L., and Lewthwaite, B.: Junior secondary school students'
conceptions about plate tectonics, Int. Res. Geogr. Environ. Educ., 26, 297–310,
https://doi.org/10.1080/10382046.2016.1262511, 2017.
Mills, R., Tomas, L., and Lewthwaite, B.: The Impact of Student-Constructed
Animation on Middle School
Students' Learning about Plate Tectonics, J. Sci. Educ. Technol., 28, 165–177, https://doi.org/10.1007/s10956-018-9755-z, 2019.
Nafidi, Y., Alami, A., Zaki, M., El Batri, B., and Afkar, H.: Impacts of the
use of a digital simulation in learning Earth sciences (The case of relative
dating in High School), J. Turkish Sci. Educ., 15, 89–108,
https://doi.org/10.12973/tused.10223a, 2018.
Paige, K., Bentley, B., and Dobson, S.: Slowmation: an innovative
twenty-first century learning tool for science and mathematics pre-service
teachers, The Australian Journal of Teacher Education, 41, 1–15,
https://doi.org/10.14221/ajte.2016v41n2.1, 2016.
Perkins, K., Moore, E., Podolefsky, N., Lancaster, K., and Denison, C.:
Towards research-based strategies for using PhET simulations in middle
schools physical science class, PERC Proceedings, AIP Press, 1413,
295–298, https://doi.org/10.1063/1.3680053, 2012.
Perkins, K., Podolefsky, N., Lancaster, K., and Moore, E.: Creating
Effective Interactive Tools for Learning: Insights from the PhET Interactive
Simulations Project, in: Proceedings of EdMedia 2012-World Conference on
Educational Media and Technology, edited by: Amiel, T. and Wilson, B.,
Denver, Colorado, USA: Association for the Advancement of Computing in
Education (AACE), 436–441, available at:
https://www.learntechlib.org/primary/p/40781/ (last access: 9 June 2020), 2012.
Phong, T. D., Moreland, J. R., Delgado, C., Wilson, K., Wang, X., Zhou, C.,
and Ice, P.: Effects of 3D virtual simulators in the introductory wind
energy course: A tool for teaching engineering concepts, Innovative
Teaching, 2, 1–10, https://doi.org/10.2466/04.07.IT.2.7, 2013.
Pinto, A., Barbot, A., Viegas, C., Silva, A. A., Santos, C. A., and Lopes,
J. B.: Teaching Science with Experimental Work and Computer Simulations in a
Primary Teacher Education Course: What Challenges to Promote Epistemic
Practices?, Proc. Tech., 13, 86–96, https://doi.org/10.1016/j.protcy.2014.02.012,
2014.
Praia, J.: Formação de professores no ensino da Geologia:
contributos para uma didáctica fundamentada na epistemologia das
ciências. O caso da Deriva Continental (Tese de Doutoramento),
Universidade de Aveiro, Aveiro, Portugal, 1995.
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan,
R. G., and Soloway, E.: A scaffolding design framework for
software to support science inquiry, The Journal of the Learning Sciences,
13, 337–386, https://doi.org/10.1207/s15327809jls1303_4, 2004.
Santos, M., Sant'Ovaia, H., Moreira, J., and Ribeiro, M. A.: Evolution of the
approach of Plate Tectonics in the school textbooks of secondary education –
from the sixties to the present, e-Terra, 15, 14–44, 2010.
Swain, J.: Designing research education. Concepts and methodologies, SAGE
Publications, 1–259, 2017.
Tan, O.: Problem-based learning pedagogies: psychological processes and
enhancement of intelligences. Educational Research for Policy and
Practice, 6, 101–114, https://doi.org/10.1007/s10671-007-9014-1, 2007.
Trundle, K. and Bell, R.: The use of a computer simulation to promote
conceptual change: A quasi-experimental study, Comput. Educ.,
54, 1078–1088, https://doi.org/10.1016/j.compedu.2009.10.012, 2010.
Wegener, A.: Die Entstehung der Kontinente und Ozeane, The Origin of
Continents and Oceans, Friedrich Vieweg & Sohn Akt. Ges., 1–231, 1922.
Wieman, C., Adams, W., Loeblein, P., and Perkins, K.: Teaching Physics using
PhET simulations, The Physics Teacher, 48, 225, https://doi.org/10.1119/1.3361987, 2010.
Wilson, J. T. (Ed.): Continents Adrift and Continents Aground, Readings
from Scientific American, W. H. Freeman and Company, 1–230, 1976.