Articles | Volume 5, issue 1
https://doi.org/10.5194/gc-5-67-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-5-67-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
V3Geo: a cloud-based repository for virtual 3D models in geoscience
Simon J. Buckley
CORRESPONDING AUTHOR
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
John A. Howell
School of Geosciences, University of Aberdeen, Meston Building, Kings College, Aberdeen AB24 3UE, UK
Nicole Naumann
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
Conor Lewis
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
Magda Chmielewska
School of Geosciences, University of Aberdeen, Meston Building, Kings College, Aberdeen AB24 3UE, UK
Kari Ringdal
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
Joris Vanbiervliet
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
Bowei Tong
NORCE Norwegian Research Centre AS, P.O. Box 22, Nygårdstangen,
5838 Bergen, Norway
Oliver S. Mulelid-Tynes
OMT Tech AS, 2312 Ottestad, Norway
Dylan Foster
OMT Tech AS, 2312 Ottestad, Norway
Gail Maxwell
School of Geosciences, University of Aberdeen, Meston Building, Kings College, Aberdeen AB24 3UE, UK
Jessica Pugsley
School of Geosciences, University of Aberdeen, Meston Building, Kings College, Aberdeen AB24 3UE, UK
Related authors
Jessica H. Pugsley, John A. Howell, Adrian Hartley, Simon J. Buckley, Rachel Brackenridge, Nicholas Schofield, Gail Maxwell, Magda Chmielewska, Kari Ringdal, Nicole Naumann, and Joris Vanbiervliet
Geosci. Commun., 5, 227–249, https://doi.org/10.5194/gc-5-227-2022, https://doi.org/10.5194/gc-5-227-2022, 2022
Short summary
Short summary
Virtual field trips have become a crucial resource during the COVID-19 pandemic within geoscience education. This study presents a critical evaluation of their use, using real-world examples delivered to a masters-level class at the University of Aberdeen. Our work highlights several key findings which can be used to help plan virtual field trips and how associated disadvantages of their use can be mitigated through a blend of physical and virtual field trips.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Clare E. Bond, Jessica H. Pugsley, Lauren Kedar, Sarah R. Ledingham, Marianna Z. Skupinska, Tomasz K. Gluzinski, and Megan L. Boath
Geosci. Commun., 5, 307–323, https://doi.org/10.5194/gc-5-307-2022, https://doi.org/10.5194/gc-5-307-2022, 2022
Short summary
Short summary
Virtual field trips are used to engage students who are unable to go into the field with geological field work. Here, we investigate the perceptions of staff and students before and after a virtual field trip, including the investigation of the success of mitigation measures designed to decrease barriers to engagement and inclusion. We conclude that negative and positive perceptions exist and that effective mitigation measures can be used to improve the student experience.
Jessica H. Pugsley, John A. Howell, Adrian Hartley, Simon J. Buckley, Rachel Brackenridge, Nicholas Schofield, Gail Maxwell, Magda Chmielewska, Kari Ringdal, Nicole Naumann, and Joris Vanbiervliet
Geosci. Commun., 5, 227–249, https://doi.org/10.5194/gc-5-227-2022, https://doi.org/10.5194/gc-5-227-2022, 2022
Short summary
Short summary
Virtual field trips have become a crucial resource during the COVID-19 pandemic within geoscience education. This study presents a critical evaluation of their use, using real-world examples delivered to a masters-level class at the University of Aberdeen. Our work highlights several key findings which can be used to help plan virtual field trips and how associated disadvantages of their use can be mitigated through a blend of physical and virtual field trips.
Kim Senger, Peter Betlem, Sten-Andreas Grundvåg, Rafael Kenji Horota, Simon John Buckley, Aleksandra Smyrak-Sikora, Malte Michel Jochmann, Thomas Birchall, Julian Janocha, Kei Ogata, Lilith Kuckero, Rakul Maria Johannessen, Isabelle Lecomte, Sara Mollie Cohen, and Snorre Olaussen
Geosci. Commun., 4, 399–420, https://doi.org/10.5194/gc-4-399-2021, https://doi.org/10.5194/gc-4-399-2021, 2021
Short summary
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
Related subject area
Subject: Open geoscience | Keyword: Community engagement
Geonews: timely geoscience educational YouTube videos about recent geologic events
Ning Wang, Zachary Clowdus, Alessandra Sealander, and Robert Stern
Geosci. Commun., 5, 125–142, https://doi.org/10.5194/gc-5-125-2022, https://doi.org/10.5194/gc-5-125-2022, 2022
Short summary
Short summary
Natural events like earthquakes provide an opportunity for geoscientists to communicate Earth science with the public. YouTube has a large number of users, but little is known about how YouTube videos on natural events engage and communicate geoscience to the public. Our results show that timely videos about geologic events in the news better engage younger and more diverse audiences to be interested in Earth science and stimulates more meaningful dialogues with certain YouTube users.
Cited articles
Agisoft: Discover intelligent photogrammetry with Metashape, https://www.agisoft.com/, last access: 22 June, 2021.
Anell, I., Zuchuat, V., Röhnert, A. D., Smyrak-Sikora, A., Buckley, S.
J., Lord, G., Maher, H., Midtkandal, I., Ogata, K., Olaussen, S., Osmundsen,
P. T., and Braathen, A.: Tidal amplification and along-strike process
variability in a mixed-energy paralic system prograding onto a low
accommodation shelf, Edgeøya, Svalbard,
Basin Res., 33, 478–512, https://doi.org/10.1111/bre.12482, 2021.
Bond, C. E. and Cawood, A. J.: A role for virtual outcrop models in blended
learning: improved 3D thinking, positive perceptions of learning and the
potential for greater equality, diversity and inclusivity in geoscience,
Geosci. Commun., 4, 233–244,
https://doi.org/10.5194/gc-4-233-2021, 2021.
Borgeat, L., Godin, G., Blais, F., Massicotte, P., and Lahanier, C.: GoLD:
Interactive display of huge colored and textured models, ACM T.
Graphics, 24, 869–877, https://doi.org/10.1145/1186822.1073276, 2005.
Buckley, S. J., Howell, J. A., Enge, H. D., and Kurz, T. H.: Terrestrial
laser scanning in geology: data acquisition, processing and accuracy
considerations, J. Geol. Soc., 165, 625–638,
https://doi.org/10.1144/0016-76492007-100, 2008a.
Buckley, S. J., Vallet, J., Braathen, A., and Wheeler, W.: Oblique
helicopter-based laser scanning for digital terrain modelling and
visualisation of geological outcrops, International Archives of the
Photogrammetry, Remote Sens. Spatial Inform. Sci., 37,
493–498, 2008b.
Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J.
A., and Dewez, T. J. B.: LIME: Software for 3-D visualization,
interpretation, and communication of virtual geoscience models, Geosphere,
15, 222–235, https://doi.org/10.1130/GES02002.1, 2019.
Cawood, A. and Bond, C.: eRock: An open-access repository of virtual
outcrops for geoscience education, GSA Today, 29, 36–37,
https://doi.org/10.1130/GSATG373GW.1, 2019.
Chandler, J. H.: Effective application of automated digital photogrammetry
for geomorphological research, Earth Surf. Process. Landf., 24,
51–63,
https://doi.org/10.1002/(SICI)1096-9837(199901)24:1<51::AID-ESP948>3.0.CO;2-H,
1999.
Creative Commons: About the licenses, https://creativecommons.org/licenses/, last access: 21 June 2021.
Eide, C. H., Howell, J. A., and Buckley, S. J.: Distribution of
discontinuous mudstone beds within wave-dominated shallow-marine deposits:
Star Point Sandstone and Blackhawk Formation, Eastern Utah, AAPG Bulletin,
98, 1401–1429, https://doi.org/10.1306/01201413106, 2014.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abellán, A.: Image-based surface reconstruction in geomorphometry – merits, limits and developments, Earth Surf. Dynam., 4, 359–389, https://doi.org/10.5194/esurf-4-359-2016, 2016.
Enge, H. D., Howell, J. A., and Buckley, S. J.: The geometry and internal
architecture of stream mouth bars in the Panther Tongue and the Ferron
Sandstone members, Utah, U.S.A., J. Sediment. Res., 80,
1018–1031, https://doi.org/10.2110/jsr.2010.088, 2010.
Granshaw, S. I.: Structure from motion: origins and originality,
Photogramm. Rec., 33, 6–10, https://doi.org/10.1111/phor.12237,
2018.
Howell, J. A., Martinius, A. W., and Good, T. R.: The application of outcrop
analogues in geological modelling: A review, present status and future
outlook, in: Sediment-Body Geometry and Heterogeneity: Analogue Studies for
Modelling the Subsurface, edited by: Martinius, A. W., Howell, J. A., and
Good, T. R., Geological Society, London, Special Publication 387, 1–25,
https://doi.org/10.1144/SP387.12, 2014.
Howell, J. A., Chmielewska, M., Lewis, C., Buckley, S. J., Naumann, N., and
Pugsley, J.: Acquisition of data for building photogrammetric virtual
outcrop models for the geosciences using remotely piloted vehicles (RPVs),
EarthArXiv [preprint], https://doi.org/10.31223/X54914, 2021.
James, M. R., Chandler, J. H., Eltner, A., Fraser, C., Miller, P. E., Mills,
J. P., Noble, T., Robson, S., and Lane, S. N.: Guidelines on the use of
structure-from-motion photogrammetry in geomorphic research, Earth Surf.
Process. Landf., 44, 2081–2084, https://doi.org/10.1002/esp.4637,
2019.
Klippel A., Zhao J., Jackson K. L., La Femina, P., Stubbs, C., Wetzel, R.,
Blair, J., Wallgrün, J. O., and Oprean, D.: Transforming earth science
education through immersive experiences: delivering on a long held promise,
J. Educ. Comput. Res., 57, 1745–1771,
https://doi.org/10.1177/0735633119854025, 2019.
Miall, A. D.: Architectural-element analysis: A new method of facies analysis
applied to fluvial deposits, Earth-Sci. Rev., 22, 261–308,
https://doi.org/10.1016/0012-8252(85)90001-7, 1985.
McCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg,
P., Imber, J., Holliman, N., and Trinks, I.: Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork,
J. Geol. Soc., 162, 927–938,
https://doi.org/10.1144/0016-764905-017, 2005.
Nesbit, P. R., Boulding, A. D., Hugenholtz, C. H., Durkin, P. R., and
Hubbard, S. M.: Visualization and sharing of 3d digital outcrop models to
promote open science, GSA Today, 30, 4–10,
https://doi.org/10.1130/GSATG425A.1, 2020.
Pavlis, T. L. and Mason, K. A.: The new world of 3D geologic mapping, GSA
Today, 27, 4–10, https://doi.org/10.1130/GSATG313A.1, 2017.
Pugsley, J. H., Howell, J. A., Hartley, A., Buckley, S. J., Brackenridge, R., Schofield, N., Maxwell, G., Chmielewska, M., Ringdal, K., Naumann, N., and Vanbiervliet, J.: Virtual Fieldtrips: construction, delivery, and implications for future geological fieldtrips, Geosci. Commun. Discuss. [preprint], https://doi.org/10.5194/gc-2021-37, in review, 2021.
Rahman, M.: Sedimentology and characterisation of marginal reservoir facies
in fluvial and delta top depositional systems, PhD thesis, University of
Aberdeen, 259 pp., 2019.
Sawicki, B. and Chaber, B.: Efficient visualization of 3D models by web
browser, Computing, 95, 661–673,
https://doi.org/10.1007/s00607-012-0275-z, 2013.
Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C.
H., Flaig, P., Forien, M., Galland, O., Gonzaga J. R., L., Jensen, M., Kurz,
T., Lecomte, I., Mair, K., Malm, R. H., Mulrooney, M., Naumann, N., Nordmo,
I., Nolde, N., Ogata, K., Rabbel, O., Schaaf, N. W., and Smyrak-Sikora, A.:
Using digital outcrops to make the high Arctic more accessible through the
Svalbox database, J. Geosci. Educ., 69, 123–137,
https://doi.org/10.1080/10899995.2020.1813865, 2020.
Senger, K., Betlem, P., Grundvåg, S.-A., Horota, R. K., Buckley, S. J.,
Smyrak-Sikora, A., Jochmann, M. M., Birchall, T., Janocha, J., Ogata, K.,
Kuckero, L., Johannessen, R. M., Lecomte, I., Cohen, S. M., and Olaussen,
S.: Teaching with digital geology in the high Arctic: opportunities and
challenges, Geosci. Commun., 4, 399–420,
https://doi.org/10.5194/gc-4-399-2021, 2021.
Sketchfab: The leading platform for 3D & AR on the web, https://sketchfab.com/, last access: 24 June 2021.
V3Geo: Virtual 3D Geoscience, https://v3geo.com, V3Geo [data set], last access: 7 March 2022.
Walker, J. D., Tikoff, B., Newman, J., Clark, R., Ash, J., Good, J., Bunse,
E. G., Möller, A., Kahn, M., Williams, R. T., Michels, Z., Andrew, J.
E., and Rufledt, C.: StraboSpot data system for structural geology,
Geosphere, 15, 533–547, https://doi.org/10.1130/GES02039.1, 2019.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.,: The FAIR guiding
principles for scientific data management and stewardship, Sci. Data,
3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, C.: Towards linear-time incremental structure from motion, International
Conference on 3D Vision-3DV, 29 June–1 July 2013, 127–134,
https://doi.org/10.1109/3DV.2013.25, 2013.
Short summary
Virtual 3D models are becoming fundamental to support field-based geoscience, with drones and image-based modelling providing rapid workflows for generating 3D datasets for mapping and education. Here, we present V3Geo, a cloud-based repository to facilitate 3D model searching, reuse, sharing and visualisation. We highlight the potential value of V3Geo for the geoscience community with examples of scenarios in publication and teaching where the repository is already being employed.
Virtual 3D models are becoming fundamental to support field-based geoscience, with drones and...
Altmetrics
Final-revised paper
Preprint