Articles | Volume 4, issue 3
https://doi.org/10.5194/gc-4-399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-4-399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Teaching with digital geology in the high Arctic: opportunities and challenges
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Peter Betlem
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Department of Geosciences, University of Oslo, Oslo, Norway
Sten-Andreas Grundvåg
Department of Geosciences, University of Tromsø – the Arctic University of Norway, Tromsø, Norway
Rafael Kenji Horota
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Department of Applied Computing, UNISINOS – Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
Department of Earth Science, University of Bergen, Bergen, Norway
Simon John Buckley
NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway
Aleksandra Smyrak-Sikora
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Malte Michel Jochmann
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Thomas Birchall
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Julian Janocha
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Department of Geosciences, University of Tromsø – the Arctic University of Norway, Tromsø, Norway
Kei Ogata
Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples, Italy
Lilith Kuckero
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Rakul Maria Johannessen
Department of Geosciences and Natural Resource Management, University of Copenhagen, 1250 Copenhagen, Denmark
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Isabelle Lecomte
Department of Earth Science, University of Bergen, Bergen, Norway
Sara Mollie Cohen
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Snorre Olaussen
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, Norway
Related authors
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Peter Betlem, Nil Rodes, Sara Mollie Cohen, and Marie Vander Kloet
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-6, https://doi.org/10.5194/gc-2024-6, 2024
Revised manuscript accepted for GC
Short summary
Short summary
Together with our students, we co-created two open geoscientific course modules using the Jupyter Book framework. Students were happy with the framework's accessibility, inclusivity, interactivity, and multimedia content and eagerly contributed to the learning materials through Github when given the opportunity. Our efforts are an important step in the development of open educational geoscientific content co-created with input from technical experts, social scientists, and students alike.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Jessica H. Pugsley, John A. Howell, Adrian Hartley, Simon J. Buckley, Rachel Brackenridge, Nicholas Schofield, Gail Maxwell, Magda Chmielewska, Kari Ringdal, Nicole Naumann, and Joris Vanbiervliet
Geosci. Commun., 5, 227–249, https://doi.org/10.5194/gc-5-227-2022, https://doi.org/10.5194/gc-5-227-2022, 2022
Short summary
Short summary
Virtual field trips have become a crucial resource during the COVID-19 pandemic within geoscience education. This study presents a critical evaluation of their use, using real-world examples delivered to a masters-level class at the University of Aberdeen. Our work highlights several key findings which can be used to help plan virtual field trips and how associated disadvantages of their use can be mitigated through a blend of physical and virtual field trips.
Simon J. Buckley, John A. Howell, Nicole Naumann, Conor Lewis, Magda Chmielewska, Kari Ringdal, Joris Vanbiervliet, Bowei Tong, Oliver S. Mulelid-Tynes, Dylan Foster, Gail Maxwell, and Jessica Pugsley
Geosci. Commun., 5, 67–82, https://doi.org/10.5194/gc-5-67-2022, https://doi.org/10.5194/gc-5-67-2022, 2022
Short summary
Short summary
Virtual 3D models are becoming fundamental to support field-based geoscience, with drones and image-based modelling providing rapid workflows for generating 3D datasets for mapping and education. Here, we present V3Geo, a cloud-based repository to facilitate 3D model searching, reuse, sharing and visualisation. We highlight the potential value of V3Geo for the geoscience community with examples of scenarios in publication and teaching where the repository is already being employed.
Thomas Birchall, Malte Jochmann, Peter Betlem, Kim Senger, Andrew Hodson, and Snorre Olaussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-226, https://doi.org/10.5194/tc-2021-226, 2021
Preprint withdrawn
Short summary
Short summary
Svalbard has over a century of drilling history, though this historical data is largely overlooked nowadays. After inspecting this data, stored in local archives, we noticed the surprisingly common phenomenon of gas trapped below the permafrost. Methane is a potent greenhouse gas, and the Arctic is warming at unprecedented rates. The permafrost is the last barrier preventing this gas from escaping into the atmosphere and if it thaws it risks a feedback effect to the already warming climate.
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020, https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Short summary
In Arctic fjord valleys, considerable amounts of methane may be stored below the permafrost and escape directly to the atmosphere through springs. A new conceptual model of how such springs form and persist is presented and confirmed by numerical modelling experiments: in uplifted Arctic valleys, freezing pressure induced at the permafrost base can drive the flow of groundwater to the surface through vents in frozen ground. This deserves attention as an emission pathway for greenhouse gasses.
Andrew J. Hodson, Aga Nowak, Mikkel T. Hornum, Kim Senger, Kelly Redeker, Hanne H. Christiansen, Søren Jessen, Peter Betlem, Steve F. Thornton, Alexandra V. Turchyn, Snorre Olaussen, and Alina Marca
The Cryosphere, 14, 3829–3842, https://doi.org/10.5194/tc-14-3829-2020, https://doi.org/10.5194/tc-14-3829-2020, 2020
Short summary
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Related subject area
Subject: Geoscience education | Keyword: Qualitative research
Transformation of geological sciences and geological engineering field methods course to remote delivery using manual, virtual, and blended tools in fall 2020
Virtual field trips utilizing virtual outcrop: construction, delivery and implications for the future
W.A.T.E.R. – a structured approach for training on advanced measurement and experimental research
Pandemic Minecrafting: an analysis of the perceptions of and lessons learned from a gamified virtual geology field camp
Using PhET™ interactive simulation plate tectonics for initial teacher education
Jennifer Jane Day
Geosci. Commun., 5, 381–395, https://doi.org/10.5194/gc-5-381-2022, https://doi.org/10.5194/gc-5-381-2022, 2022
Short summary
Short summary
Geological (Engineering) Field Methods is a core course at Queen’s University in Kingston, Canada, where students learn how to investigate the Earth. Typically, this course involves weekly field trips to visit a variety of rock outcrops to learn navigation, observation, and measurement. Remote delivery of this course in fall 2020 due to COVID-19 required a transformation using new virtual, manual, and blended tools. Although largely successful, a return to in-person teaching is recommended.
Jessica H. Pugsley, John A. Howell, Adrian Hartley, Simon J. Buckley, Rachel Brackenridge, Nicholas Schofield, Gail Maxwell, Magda Chmielewska, Kari Ringdal, Nicole Naumann, and Joris Vanbiervliet
Geosci. Commun., 5, 227–249, https://doi.org/10.5194/gc-5-227-2022, https://doi.org/10.5194/gc-5-227-2022, 2022
Short summary
Short summary
Virtual field trips have become a crucial resource during the COVID-19 pandemic within geoscience education. This study presents a critical evaluation of their use, using real-world examples delivered to a masters-level class at the University of Aberdeen. Our work highlights several key findings which can be used to help plan virtual field trips and how associated disadvantages of their use can be mitigated through a blend of physical and virtual field trips.
Margaret Chen, Rui Aleixo, Massimo Guerrero, and Rui Ferreira
Geosci. Commun., 5, 143–150, https://doi.org/10.5194/gc-5-143-2022, https://doi.org/10.5194/gc-5-143-2022, 2022
Short summary
Short summary
W.A.T.E.R. stands for Workshop on Advanced measurement Techniques and Experimental Research. It provides a structured approach for the learning and training platform to professionals with an experimental background in fluid mechanics. It offers an opportunity to learn about state-of-the-art instrumentation and measurement techniques and the latest developments in the field by partnering with academics, instrumentation manufacturers, and public sectors for sharing knowledge and good practices.
Erika Rader, Renee Love, Darryl Reano, Tonia A. Dousay, and Natasha Wingerter
Geosci. Commun., 4, 475–492, https://doi.org/10.5194/gc-4-475-2021, https://doi.org/10.5194/gc-4-475-2021, 2021
Short summary
Short summary
In response to the COVID-19 pandemic shutdown, we designed a virtual geology field camp based in the video game Minecraft. Students learned how to map geological features on the surface and in the subsurface using this fun and engaging platform. Students' perceptions of the course were positive, and they showed improvement in basic geologic skills between pre-assessment and post-assessment surveys. Students discussed career pathways and skills and fostered interpersonal relationships.
Bento Cavadas and Sara Aboim
Geosci. Commun., 4, 43–56, https://doi.org/10.5194/gc-4-43-2021, https://doi.org/10.5194/gc-4-43-2021, 2021
Short summary
Short summary
This work presents the use of a digital educational resource, CreativeLab_Sci&Math | Plate Tectonics, which explores the PhETTM Plate Tectonics simulator in the context of pre-service teacher education. Results show that the digital educational resource contributed to pre-service teachers successfully achieving learning outcomes concerning the dynamics of plate tectonics.
Cited articles
Ahlborn, M. and Stemmerik, L.: Depositional evolution of the Upper
Carboniferous-Lower Permian Wordiekammen carbonate platform, Nordfjorden
High, central Spitsbergen, Arctic Norway, Norw. J. Geol., 95, 91–126, 2015.
Anell, I., Braathen, A., and Olaussen, S.: The Triassic-Early Jurassic of
the northern Barents Shelf: a regional understanding of the Longyearbyen
CO2 reservoir, Norw. J. Geol., 94, 83–98, 2014.
Anell, I., Lecomte, I., Braathen, A., and Buckley, S.: Synthetic seismic
illumination of small-scale growth faults, paralic deposits and low-angle
clinoforms: A case study of the Triassic successions on Edgeøya, NW
Barents Shelf, Mar. Petrol. Geol., 77, 625–639, https://doi.org/10.1016/j.marpetgeo.2016.07.005, 2016.
Beka, T. I., Senger, K., Autio, U. A., Smirnov, M., and Birkelund, Y.:
Integrated electromagnetic data investigation of a Mesozoic CO2 storage
target reservoir-cap-rock succession, Svalbard, J. Appl. Geophys., 136, 417–430, 2017.
Bergen, K. J., Johnson, P. A., Maarten, V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019.
Berry, C. M. and Marshall, J. E.: Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard, Geology, 43, 1043–1046, 2015.
Betlem, P.: Virtual Outcrop Models/Synthetic seismic, GitHub [code], available at: https://github.com/svalbox/Cookbook (last access: 20 September 2021), 2019.
Betlem, P., Birchall, T., Mosociova, T., Sartell, A. M. R., and Senger, K.:
From seismic-scale outcrop to hand sample: streamlining SfM photogrammetry
processing in the geosciences, ARCEx annual conference, digital, available at: https://arcex.no/arcex-2020/ (last access: 7 September 2021), 2020a.
Betlem, P., Birchall, T., Ogata, K., Park, J., Skurtveit, E., and Senger,
K.: Digital Drill Core Models: Structure-from-Motion as a Tool for the
Characterisation, Orientation, and Digital Archiving of Drill Core Samples,
Remote Sens., 12, 330, https://doi.org/10.3390/rs12020330, 2020b.
Bjørnerud, M.: Stratigraphic record of Neoproterozoic ice sheet collapse:
the Kapp Lyell diamictite sequence, SW Spitsbergen, Svalbard, Geol. Mag., 147, 380–390, 2010.
Blomeier, D., Scheibner, C., and Forke, H.: Facies arrangement and
cyclostratigraphic architecture of a shallow-marine, warm-water carbonate
platform: the Late Carboniferous Ny Friesland Platform in eastern
Spitsbergen (Pyefjellet Beds, Wordiekammen Formation, Gipsdalen Group),
Facies, 55, 291–324, 2009.
Blomeier, D., Dustira, A., Forke, H., and Scheibner, C.: Environmental
change in the Early Permian of NE Svalbard: from a warm-water carbonate
platform (Gipshuken Formation) to a temperate, mixed siliciclastic-carbonate
ramp (Kapp Starostin Formation), Facies, 57, 493–523, 2011.
Blomeier, D., Dustira, A. M., Forke, H., and Scheibner, C.: Facies analysis
and depositional environments of a storm-dominated, temperate to cold, mixed
siliceous-carbonate ramp: the Permian Kapp Starostin Formation in NE
Svalbard, Norw. J. Geol., 93, 75–93, 2013.
Bond, C. E. and Cawood, A. J.: A role for virtual outcrop models in blended learning – improved 3D thinking and positive perceptions of learning, Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, 2021.
Bond, D. P., Wignall, P. B., Joachimski, M. M., Sun, Y., Savov, I., Grasby,
S. E., Beauchamp, B., and Blomeier, D. P.: An abrupt extinction in the
Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link
to anoxia and acidification, GSA Bulletin, 127, 1411–1421, 2015.
Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O.,
Elvebakk, H., Hansen, F., Hanssen, T. H., Jochmann, M., Johansen, T. A.,
Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mørk, A., Mørk, M. B.,
Nemec, W. J., Olaussen, S., Oye, V., Rød, K., Titlestad, G. O.,
Tveranger, J., and Vagle, K.: Longyearbyen CO2 lab of Svalbard, Norway
– first assessment of the sedimentary succession for CO2 storage,
Norw. J. Geol., 92, 353–376, 2012.
Buckley, S. J., Howell, J. A., Enge, H. D., and Kurz, T. H.: Terrestrial
laser scanning in geology: data acquisition, processing and accuracy
considerations, Journal of the Geological Society, 165, 625–638,
10.1144/0016-76492007-100, 2008.
Buckley, S. J., Naumann, N., Ringdal, K., Tong, B., Vanbiervliet, J.,
Chmielewska, M., Maxwell, G., and Howell, J.: The digital geoscience
revolution – where are we now?, APGCE 2019, 1–5, 2019a.
Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J.
A., and Dewez, T. J.: LIME: Software for 3-D visualization, interpretation,
and communication of virtual geoscience models, Geosphere, 15, 222–235, 2019b.
Cartwright, J. and Huuse, M.: 3D seismic technology: the geological
“Hubble”, Basin Res., 17, 1–20, 2005.
Cawood, A. J. and Bond, C. E.: eRock: An open-access repository of virtual
outcrops for geoscience education, GSA Today, 36–37,
https://doi.org/10.1130/GSATG373GW.1, 2019.
Dallmann, W. K. (Ed.): Geoscience Atlas of Svalbard, Norsk Polarinstitutt,
Rapportserie nr. 148, 292 pp., 2015.
Dypvik, H., Riber, L., Burca, F., Rüther, D., Jargvoll, D., Nagy, J.,
and Jochmann, M.: The Paleocene–Eocene thermal maximum (PETM) in
Svalbard–clay mineral and geochemical signals, Palaeogeogr. Palaeocl., 302, 156–169, 2011.
Fabuel-Perez, I., Hodgetts, D., and Redfern, J.: Integration of digital
outcrop models (DOMs) and high resolution sedimentology–workflow and
implications for geological modelling: Oukaimeden Sandstone Formation, High
Atlas (Morocco), Petrol. Geosci., 16, 133–154, 2010.
Fairchild, I. J., Fleming, E. J., Bao, H., Benn, D. I., Boomer, I., Dublyansky, Y. V., Halverson, G. P., Hambrey, M. J., Hendy, C., and
McMillan, E. A.: Continental carbonate facies of a Neoproterozoic panglaciation, north-east Svalbard, Sedimentology, 63, 443–497, 2016.
García-Sellés, D., Falivene, O., Arbués, P., Gratacos, O.,
Tavani, S., and Muñoz, J. A.: Supervised identification and
reconstruction of near-planar geological surfaces from terrestrial laser
scanning, Comput. Geosci., 37, 1584–1594, 2011.
Gonzaga, L., Veronez, M. R., Kannenberg, G. L., Alves, D. N., Santana, L. G., de Fraga, J. L., Inocencio, L. C., de Souza, L. V., Boirdin, F., Tognoli, F. M. W., Senger, K., and Cazarin, C. L.: MOSIS – Multi-Outcrop Sharing & Interpretation System, IEEE Geoscience and Remote Sensing Magazine, 6, 8–16, https://doi.org/10.1109/MGRS.2018.2825990, 2018.
Greenwood, D. R., Basinger, J. F., and Smith, R. Y.: How wet was the Arctic
Eocene rain forest? Estimates of precipitation from Paleogene Arctic
macrofloras, Geology, 38, 15–18, 2010.
Grundvåg, S.-A., Jelby, M. E., Sliwinska, K. K., Nøhr-Hansen, H.,
Aadland, T., Sandvik, S. E., Tennvassås, I., Engen, T., and Olaussen,
S.: Sedimentology and palynology of the Lower Cretaceous succession of
central Spitsbergen: integration of subsurface and outcrop data, Norw.
J. Geol., 99, 1–32, 2019.
Guo, H., Wang, L., Chen, F., and Liang, D.: Scientific big data and digital
earth, Chinese Sci. Bull., 59, 5066–5073, 2014.
Hambrey, M.: Late Precambrian diamictites of northeastern Svalbard,
Geol. Mag., 119, 527–551, 1982.
Hanken, N.-M. and Nielsen, J. K.: Upper Carboniferous–Lower Permian
Palaeoaplysina build-ups on Svalbard: the influence of climate, salinity and
sea-level, Geological Society, London, Special Publications, 376, 269–305,
2013.
Harding, I. C., Charles, A. J., Marshall, J. E., Pälike, H., Roberts, A.
P., Wilson, P. A., Jarvis, E., Thorne, R., Morris, E., and Moremon, R.:
Sea-level and salinity fluctuations during the Paleocene–Eocene thermal
maximum in Arctic Spitsbergen, Earth Planet. Sc. Lett., 303, 97–107, 2011.
Harland, W. and Anderson, L.: Appendix: Economic geology: exploration for
coal, oil and minerals, in: Geology of Svalbard, edited by: Harland, W., The
Geological Society, Bath, UK, 449–454, 1997.
Helland-Hansen, W. and Grundvåg, S. A.: The Svalbard Eocene-Oligocene
(?) Central Basin succession: Sedimentation patterns and controls, Basin
Res., 33, 729–753, 2021.
Hodgetts, D.: Laser scanning and digital outcrop geology in the petroleum
industry: a review, Mar. Petrol. Geol., 46, 335–354, 2013.
Horota, R.: AG222 excursion @ UNIS – February 2020, YouTube, available at: https://www.youtube.com/watch?v=w1XHoM1BlCM, last access: 7 September 2021), 2020.
Howell, J. A., Martinius, A. W., and Good, T. R.: The application of outcrop
analogues in geological modelling: a review, present status and future
outlook, in: Sediment-Body Geometry and Heterogeneity: Analogue Studies for
Modelling the Subsurface, edited by: Martinius, A. W., Howell, J. A., and
Good, T. R., Geological Society of London, London, 1–25, 2014.
Hurum, J. H., Druckenmiller, P. S., Hammer, Ø., Nakrem, H. A., and
Olaussen, S.: The theropod that wasn't: an ornithopod tracksite from the
Helvetiafjellet Formation (Lower Cretaceous) of Boltodden, Svalbard,
Geological Society, London, Special Publications, 434, 189–206, 2016.
Hüneke, H., Joachimski, M., Buggisch, W., and Lützner, H.: Marine
carbonate facies in response to climate and nutrient level: the Upper
Carboniferous and Permian of Central Spitsbergen (Svalbard), Facies, 45,
93–135, 2001.
Janocha, J., Smyrak-Sikora, A., Senger, K., and Birchall, T.: Seeing beyond
the outcrop: Integration of ground-penetrating radar with digital outcrop
models of a paleokarst system, Mar. Petrol. Geol., 125, 104833, https://doi.org/10.1016/j.marpetgeo.2020.104833, 2020.
Janocha, J., Birchall, T., Betlem, P., and Lord, G.: Discover Svalbard's Geology with Svalbox, YouTube, available at: https://www.youtube.com/watch?v=gJR-qp5XMsw&t=2s, last access: 7 September 2021.
Jelby, M. E., Śliwińska, K. K., Koevoets, M. J., Alsen, P., Vickers,
M. L., Olaussen, S., and Stemmerik, L.: Arctic reappraisal of global
carbon-cycle dynamics across the Jurassic–Cretaceous boundary and
Valanginian Weissert Event, Palaeogeogr. Palaeocl., 555, 109847, https://doi.org/10.1016/j.palaeo.2020.109847, 2020.
Johannessen, R. M.: Arctic Geology – Integrated Geological Methods: from outcrop to geomodel (AG222 @ UNIS), YouTube, available at: https://www.youtube.com/watch?v=Pjr-4L5zqE8, last access: 7 September 2021.
Kastens, K. A., Manduca, C. A., Cervato, C., Frodeman, R., Goodwin, C., Liben, L. S., Mogk, D. W., Spangler, T. C., Stillings, N. A., and Titus, S.:
How geoscientists think and learn, Eos T. Am. Geophys. Un., 90, 265–266, 2009.
Klausen, T. G., Nyberg, B., and Helland-Hansen, W.: The largest delta plain
in Earth's history, Geology, 47, 470–474, 2019.
Klausen, T. G., Paterson, N. W., and Benton, M. J.: Geological control on
dinosaurs' rise to dominance: Late Triassic ecosystem stress by relative sea
level change, Terra Nova, 32, 434–441, 2020.
Knoll, A. H. and Swett, K.: Micropaleontology across the
Precambrian-Cambrian boundary in Spitsbergen, J. Paleontol., 61, 898–926, 1987.
Koevoets, M. J., Abay, T. B., Hammer, Ø., and Olaussen, S.:
High-resolution organic carbon–isotope stratigraphy of the Middle
Jurassic–Lower Cretaceous Agardhfjellet Formation of central Spitsbergen,
Svalbard, Palaeogeogr. Palaeocl., 449, 266–274,
https://doi.org/10.1016/j.palaeo.2016.02.029, 2016.
Koevoets, M. K., Hammer, Ø., and Little, C. T.: Palaeoecology and
palaeoenvironments of the Middle Jurassic to lowermost Cretaceous
Agardhfjellet Formation (Bathonian-Ryazanian), Spitsbergen, Svalbard,
Norw. J. Geol., 99, 1–24, 2019.
Larsen, T.: Fractured carbonates in the Mediumfjellet thrust-stack in the
Tertiary fold-and-thrust belt of Spitsbergen, MSc thesis, Department of Arctic Geology, University of Tromsø, Tromsø,
available at: https://munin.uit.no/handle/10037/1800 (last access: 7 September 2021), 2010.
Larssen, K., Senger, K., and Grundvåg, S.-A.: Fracture characterization
in Upper Permian carbonates in Spitsbergen: A workflow from digital outcrop
to geo-model, Mar. Petrol. Geol., 122, 104703, https://doi.org/10.1016/j.marpetgeo.2020.104703, 2020.
Lord, G. S., Johansen, S. K., Støen, S. J., and Mørk, A.: Facies
development of the Upper Triassic succession on Barentsøya, Wilhelmøya
and NE Spitsbergen, Svalbard, Norw. J. Geol., 97, 33–62, 2017.
Lubrano-Lavadera, P., Senger, K., Mulrooney, M., Lecomte, I., and Kuehn, D.:
Seismic modelling of metre-scale normal faults at a reservoir-cap rock
interface in Central Spitsbergen, Svalbard: implications for CO2 storage,
Norw. J. Geol., 99, 323–341, 2019.
Marques Jr., A., Horota, R. K., de Souza, E. M., Lupssinskü, L., Rossa,
P., Aires, A. S., Bachi, L., Veronez, M. R., Gonzaga Jr, L., and Cazarin, C.
L.: Virtual and digital outcrops in the petroleum industry: A systematic
review, Earth-Sci. Rev., 208, 103260, https://doi.org/10.1016/j.earscirev.2020.103260, 2020.
Matysik, M., Stemmerik, L., Olaussen, S., and Brunstad, H.: Diagenesis of
spiculites and carbonates in a Permian temperate ramp
succession–Tempelfjorden Group, Spitsbergen, Arctic Norway, Sedimentology,
65, 745–774, 2018.
McCaffrey, K., Jones, R., Holdsworth, R., Wilson, R., Clegg, P., Imber, J.,
Holliman, N., and Trinks, I.: Unlocking the spatial dimension: digital
technologies and the future of geoscience fieldwork, Journal of the
Geological Society, 162, 927–938, 2005.
McCaffrey, K., Hodgetts, D., Howell, J., Hunt, D., Imber, J., Jones, R.,
Tomasso, M., Thurmond, J., and Viseur, S.: Virtual fieldtrips for petroleum
geoscientists, Geological Society, London, Petroleum Geology Conference
series, 7, 19–26, 2010.
Midtkandal, I., Svensen, H. H., Planke, S., Corfu, F., Polteau, S., Torsvik,
T. H., Faleide, J. I., Grundvåg, S.-A., Selnes, H., and Kürschner,
W.: The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard,
Barents Sea, and the absolute age of the Barremian-Aptian boundary,
Palaeogeogr. Palaeocl., 463, 126–135, 2016.
Mogk, D. W. and Goodwin, C.: Learning in the field: Synthesis of research
on thinking and learning in the geosciences, Geological Society of America
Special Papers, 486, 131–163, 2012.
Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L. O.
B., and Wilkinson, M. D.: Cloudy, increasingly FAIR; revisiting the FAIR
Data guiding principles for the European Open Science Cloud, Information
Services & Use, 37, 49–56, 2017.
Mørk, M. B. E.: Diagenesis and quartz cement distribution of
low-permeability Upper Triassic – Middle Jurassic reservoir sandstones,
Longyearbyen CO2 lab well site in Svalbard, Norway, AAPG Bulletin, 97,
577–596, https://doi.org/10.1306/10031211193, 2013.
Nesbit, P. R., Durkin, P. R., Hugenholtz, C. H., Hubbard, S. M., and
Kucharczyk, M.: 3-D stratigraphic mapping using a digital outcrop model
derived from UAV images and structure-from-motion photogrammetry, Geosphere,
14, 2469–2486, 2018.
Nesbit, P. R., Boulding, A. D., Hugenholtz, C. H., Durkin, P. R., and
Hubbard, S. M.: Visualization and sharing of 3D digital outcrop models to
promote open science, GSA Today, 30, 1–8, https://doi.org/10.1130/GSATG425A.1.2020, 2020.
Nguyen, T., Gosine, R. G., and Warrian, P.: A systematic review of big data
analytics for oil and gas industry 4.0, IEEE Access, 8, 61183–61201, 2020.
Novakova, L. and Pavlis, T. L.: Assessment of the precision of smart phones
and tablets for measurement of planar orientations: A case study, J.
Struct. Geol., 97, 93–103, https://doi.org/10.1016/j.jsg.2017.02.015, 2017.
Nøttvedt, A., Livbjerg, F., Midbøe, P. S., and Rasmussen, E.:
Hydrocarbon potential of the Central Spitsbergen Basin, in: Arctic Geology
and Petroleum Potential, edited by: Vorren, T. O., Bergsager, E.,
Dahl-Stamnes, Ø. A., Holter, E., Johansen, B., Lie, E., and Lund, T. B.,
Elsevier, Amsterdam, 333–361, 1993.
Ogata, K., Senger, K., Braathen, A., Tveranger, J., and Olaussen, S.:
Fracture systems and meso-scale structural patterns in the siliciclastic
Mesozoic reservoir-caprock succession of the Longyearbyen CO2 Lab project:
implications for geologic CO2 sequestration on Central Spitsbergen,
Svalbard, Norw. J. Geol., 94, 121–154, 2014.
Olaussen, S., Senger, K., Braathen, A., Grundvåg, S. A., and Mørk, A.: You learn as long as you drill; research synthesis from the Longyearbyen
CO2 Laboratory, Svalbard, Norway, Norw. J. Geol., 99, 157–187,
https://doi.org/10.17850/njg008, 2019.
Paterson, N. W. and Mangerud, G.: A revised palynozonation for the
Middle–Upper Triassic (Anisian–Rhaetian) Series of the Norwegian Arctic,
Geol. Mag., 157, 1568–1592, 2020.
Pott, C.: The Upper Triassic flora of Svalbard, Acta Palaeontol. Pol., 59, 709–740, 2012.
Pringle, J. K., Howell, J. A., Hodgetts, D., Westerman, A. R., and Hodgson,
D. M.: Virtual outcrop models of petroleum reservoir analogues: a review of
the current state-of-the-art, First Break, 24, 33–42, 2006.
Rabbel, O., Galland, O., Mair, K., Lecomte, I., Senger, K., Spacapan, J. B.,
and Manceda, R.: From field analogues to realistic seismic modelling: a case
study of an oil-producing andesitic sill complex in the Neuquén Basin,
Argentina, Journal of the Geological Society, 175, 580, https://doi.org/10.1144/jgs2017-116, 2018.
Rismyhr, B., Bjærke, T., Olaussen, S., Mulrooney, M. J., and Senger, K.:
Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya
Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen,
Svalbard, Norsk Geol. Tidsskr., 99, 35–64, 2018.
Rittersbacher, A., Buckley, S. J., Howell, J. A., Hampson, G. J., and
Vallet, J.: Helicopter-based laser scanning: a method for quantitative
analysis of large-scale sedimentary architecture, in: Sediment-body Geometry
and Heterogeneity: Analogue Studies for Modelling the Subsurface, edited by:
Martinius, A. W., Howell, J. A., and Good, T., Geological Society of London
Special Publication No. 387, 1–18, 2013.
Saether, B., Johansen, S. E., Hesthammer, J., Solbakken, O., and
Synnestvedt, K.: Using geosimulators to enhance field-based geological
training, First Break, 22, 23–28, 2004.
Senger, K. and Betlem, P.: Svalbox: a geoscientific portal for Svalbard, University Centre in Svalbard (UNIS), available at: http://www.svalbox.no/map, last access: 7 September 2021.
Senger, K. and Nordmo, I.: Using digital field notebooks in geoscientific
learning in polar environments, Journal of Geoscience Education, 2, 166–177, https://doi.org/10.1080/10899995.2020.1725407, 2020.
Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S.: Late
Mesozoic magmatism in Svalbard: A review, Earth-Sci. Rev., 139, 123–144, https://doi.org/10.1016/j.earscirev.2014.09.002, 2014.
Senger, K., Buckley, S. J., Chevallier, L., Fagereng, Å., Galland, O.,
Kurz, T. H., Ogata, K., Planke, S., and Tveranger, J.: Fracturing of
doleritic intrusions and associated contact zones: Implications for fluid
flow in volcanic basins, J. Afr. Earth Sci., 102, 70–85, https://doi.org/10.1016/j.jafrearsci.2014.10.019, 2015a.
Senger, K., Tveranger, J., Braathen, A., Olaussen, S., Ogata, K., and
Larsen, L.: CO2 storage resource estimates in unconventional
reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic
Norway, Environ. Earth Sci., 73, 3987–4009, https://doi.org/10.1007/s12665-014-3684-9, 2015b.
Senger, K., Brugmans, P., Grundvåg, S.-A., Jochmann, M., Nøttvedt,
A., Olaussen, S., Skotte, A., and Smyrak-Sikora, A.: Petroleum exploration
and research drilling onshore Svalbard: a historical perspective, Norw. J. Geol., 99, https://doi.org/10.17850/njg99-3-1, 2019.
Senger, K., Betlem, P., Birchall, T., Buckley, S. J., Coakley, B., Eide, C. H., Flaig, P. P., Forien, M., Galland, O., Gonzaga, L., Jensen, M., Kurz, T., Lecomte, I., Mair, K., Malm, R. H., Mulrooney, M., Naumann, N., Nordmo, I., Nolde, N., Ogata, K., Rabbel, O., Schaaf, N. W., and Smyrak-Sikora, A.: Using digital outcrops to make the high Arctic more accessible through the Svalbox database, Journal of Geoscience Education, 69, 123–137, 2021a.
Senger, K., Jochmann, M., Smyrak-Sikora, A., Betlem, P., Planke, S.,
Mørk, A., Olaussen, S., Grundvåg, S.-A., Schiellerup, H., Lord, G.,
and Jensen, M.: Filling the Svalbard Rock Vault: Opportunities for deep-time
paleoclimate studies, Geological Society of Norway Winter Conference, Online, 6-8 January 2021b.
Smith, M., Carrivick, J., and Quincey, D.: Structure from motion
photogrammetry in physical geography, Prog. Phys. Geogr., 40, 247–275, 2016.
Smyrak-Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., and
Braathen, A.: Sedimentary architecture during Carboniferous rift
initiation–the arid Billefjorden Trough, Svalbard, Journal of the
Geological Society, 176, 225–252, 2019.
Smyrak-Sikora, A., Birchall, T., Janocha, J., Betlem, P., and Senger, K.:
Virtual geological trips–a complementary tool for field excursions in the
Arctic?, AGU Fall Meeting 2020, 1–8, 2020a.
Smyrak-Sikora, A., Osmundsen, P. T., Braathen, A., Ogata, K., Anell, I.,
Mulrooney, M. J., and Zuchuat, V.: Architecture of growth basins in a
tidally influenced, prodelta to delta-front setting: The Triassic succession
of Kvalpynten, East Svalbard, Basin Res., 32, 959–988, 2020b.
Sorento, T., Olaussen, S., and Stemmerik, L.: Controls on deposition of
shallow marine carbonates and evaporites–lower Permian Gipshuken Formation,
central Spitsbergen, Arctic Norway, Sedimentology, 67, 207–238, 2020.
Spielhagen, R. F. and Tripati, A.: Evidence from Svalbard for near-freezing
temperatures and climate oscillations in the Arctic during the Paleocene and
Eocene, Palaeogeogr. Palaeocl., 278, 48–56, 2009.
Strand, S. A. H.: Layer parallel shortening and cataclastic flow by
fractures in the Permian Kapp Starostin Formation, Mediumfjellet,
Spitsbergen, MSc thesis, The University of Bergen, available at: https://bora.uib.no/bora-xmlui/handle/1956/10297 (last access: 7 September 2021), 2015.
Uhl, D., Traiser, C., Griesser, U., and Denk, T.: Fossil leaves as
palaeoclimate proxies in the Palaeogene of Spitsbergen (Svalbard), Acta
Palaeobotanica Krakow, 47, 89–107, 2007.
V3Geo: https://v3geo.com/, last access: 7 September 2021.
Vickers, M. L., Price, G. D., Jerrett, R. M., and Watkinson, M.: Stratigraphic and geochemical expression of Barremian–Aptian global climate
change in Arctic Svalbard, Geosphere, 12, 1594–1605, 2016.
Westoby, M., Brasington, J., Glasser, N., Hambrey, M., and Reynolds, J.:
`Structure-from-Motion' photogrammetry: A low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314, 2012.
Whitmeyer, S. J., Atchison, C., and Collins, T. D.: Using Mobile Technologies to Enhance Accessibility and Inclusion in Field-Based Learning,
GSA Today, 30, 4–10, 2020.
Wignall, P. B., Bond, D. P., Sun, Y., Grasby, S. E., Beauchamp, B.,
Joachimski, M. M., and Blomeier, D. P.: Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression
of benthic radiation, Geol. Mag., 153, 316–331, 2016.
Worsley, D.: The post-Caledonian development of Svalbard and the western
Barents Sea, Polar Res., 27, 298–317, https://doi.org/10.1111/j.1751-8369.2008.00085.x, 2008.
Zuchuat, V., Sleveland, A., Twitchett, R., Svensen, H., Turner, H., Augland,
L., Jones, M., Hammer, Ø., Hauksson, B., and Haflidason, H.: A new
high-resolution stratigraphic and palaeoenvironmental record spanning the
End-Permian Mass Extinction and its aftermath in central Spitsbergen,
Svalbard, Palaeogeogr. Palaeocl., 554, 109732, https://doi.org/10.1016/j.palaeo.2020.109732, 2020.
Short summary
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs) actively in a new course (
AG222 Integrated Geological Methods: From Outcrop To Geomodel) to solve authentic geoscientific challenges. DOMs are shared through the open-access Svalbox geoscientific portal, along with 360° imagery, subsurface data and published geoscientific data from Svalbard. Here we share experiences from the AG222 course and Svalbox, both before and during the Covid-19 pandemic.
At UNIS, located at 78° N in Longyearbyen in Arctic Norway, we use digital outcrop models (DOMs)...
Altmetrics
Final-revised paper
Preprint