Articles | Volume 3, issue 2
https://doi.org/10.5194/gc-3-203-2020
https://doi.org/10.5194/gc-3-203-2020
Research article
 | 
19 Aug 2020
Research article |  | 19 Aug 2020

“Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line perspectives on transitioning to probabilistic fluvial flood forecasts in England

Louise Arnal, Liz Anspoks, Susan Manson, Jessica Neumann, Tim Norton, Elisabeth Stephens, Louise Wolfenden, and Hannah Louise Cloke

Related authors

Editorial: The shadowlands of (geo)science communication in academia – definitions, problems, and possible solutions
Shahzad Gani, Louise Arnal, Lucy Beattie, John Hillier, Sam Illingworth, Tiziana Lanza, Solmaz Mohadjer, Karoliina Pulkkinen, Heidi Roop, Iain Stewart, Kirsten von Elverfeldt, and Stephanie Zihms
Geosci. Commun., 7, 251–266, https://doi.org/10.5194/gc-7-251-2024,https://doi.org/10.5194/gc-7-251-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Hybrid forecasting: blending climate predictions with AI models
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023,https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Canadian historical Snow Water Equivalent dataset (CanSWE, 1928–2020)
Vincent Vionnet, Colleen Mortimer, Mike Brady, Louise Arnal, and Ross Brown
Earth Syst. Sci. Data, 13, 4603–4619, https://doi.org/10.5194/essd-13-4603-2021,https://doi.org/10.5194/essd-13-4603-2021, 2021
Short summary
Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity
Jessica L. Neumann, Louise Arnal, Rebecca E. Emerton, Helen Griffith, Stuart Hyslop, Sofia Theofanidi, and Hannah L. Cloke
Geosci. Commun., 1, 35–57, https://doi.org/10.5194/gc-1-35-2018,https://doi.org/10.5194/gc-1-35-2018, 2018
Short summary

Related subject area

Subject: Geoscience engagement | Keyword: Risk communication
GC Insights: Open-access R code for translating the co-occurrence of natural hazards into impact on joint financial risk
John Hillier, Adrian Champion, Tom Perkins, Freya Garry, and Hannah Bloomfield
Geosci. Commun., 7, 195–200, https://doi.org/10.5194/gc-7-195-2024,https://doi.org/10.5194/gc-7-195-2024, 2024
Short summary
GC Insights: Communicating long-term changes in local climate risk using a physically plausible causal chain
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
Geosci. Commun., 7, 161–165, https://doi.org/10.5194/gc-7-161-2024,https://doi.org/10.5194/gc-7-161-2024, 2024
Short summary
Quantifying and communicating uncertain climate change hazards in participatory climate change adaptation processes
Laura Müller and Petra Döll
Geosci. Commun., 7, 121–144, https://doi.org/10.5194/gc-7-121-2024,https://doi.org/10.5194/gc-7-121-2024, 2024
Short summary
Co-RISK: a tool to co-create impactful university–industry projects for natural hazard risk mitigation
John K. Hillier and Michiel van Meeteren
Geosci. Commun., 7, 35–56, https://doi.org/10.5194/gc-7-35-2024,https://doi.org/10.5194/gc-7-35-2024, 2024
Short summary
Is there a climate change reporting bias? A case study of English-language news articles, 2017–2022
Chloe Brimicombe
Geosci. Commun., 5, 281–287, https://doi.org/10.5194/gc-5-281-2022,https://doi.org/10.5194/gc-5-281-2022, 2022
Short summary

Cited articles

Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., van Andel, S. J., and Pappenberger, F.: Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game, Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, 2016. 
Bischiniotis, K., van den Hurk, B., Coughlan de Perez, E., Veldkamp, T., Guimarães Nobre, G., and Aerts, J.: Assessing Time, Cost and Quality Trade-Offs in Forecast-Based Action for Floods, Int. J. Disast. Risk Re., 40, 101252, https://doi.org/10.1016/j.ijdrr.2019.101252, 2019. 
Bruen, M., Krahe, P., Zappa, M., Olsson, J., Vehvilainen, B., Kok, K., and Daamen, K.: Visualizing Flood Forecasting Uncertainty: Some Current European EPS Platforms-COST731 Working Group 3, Atmos. Sci. Lett., 11, 92–99, https://doi.org/10.1002/asl.258, 2010. 
Buizza, R.: The Value of Probabilistic Prediction, Atmos. Sci. Lett., 9, 36–42, https://doi.org/10.1002/asl.170, 2008. 
Cloke, H. L. and Pappenberger, F.: Ensemble Flood Forecasting: A Review, J. Hydrol., 375, 613–26, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009. 
Download
Short summary
The Environment Agency (EA), responsible for flood risk management in England, is moving towards the use of probabilistic river flood forecasts. By showing the likelihood of future floods, they can allow earlier anticipation. But making decisions on probabilistic information is complex and interviews with EA decision-makers highlight the practical challenges and opportunities of this transition. We make recommendations to support a successful transition for flood early warning in England.
Altmetrics
Final-revised paper
Preprint