Articles | Volume 3, issue 2
Geosci. Commun., 3, 203–232, 2020
https://doi.org/10.5194/gc-3-203-2020
Geosci. Commun., 3, 203–232, 2020
https://doi.org/10.5194/gc-3-203-2020

Research article 19 Aug 2020

Research article | 19 Aug 2020

“Are we talking just a bit of water out of bank? Or is it Armageddon?” Front line perspectives on transitioning to probabilistic fluvial flood forecasts in England

Louise Arnal et al.

Related authors

Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity
Jessica L. Neumann, Louise Arnal, Rebecca E. Emerton, Helen Griffith, Stuart Hyslop, Sofia Theofanidi, and Hannah L. Cloke
Geosci. Commun., 1, 35–57, https://doi.org/10.5194/gc-1-35-2018,https://doi.org/10.5194/gc-1-35-2018, 2018
Short summary
Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-2018,https://doi.org/10.5194/gmd-11-3327-2018, 2018
Short summary
Skilful seasonal forecasts of streamflow over Europe?
Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018,https://doi.org/10.5194/hess-22-2057-2018, 2018
Short summary
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016,https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary

Cited articles

Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., van Andel, S. J., and Pappenberger, F.: Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game, Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, 2016. 
Bischiniotis, K., van den Hurk, B., Coughlan de Perez, E., Veldkamp, T., Guimarães Nobre, G., and Aerts, J.: Assessing Time, Cost and Quality Trade-Offs in Forecast-Based Action for Floods, Int. J. Disast. Risk Re., 40, 101252, https://doi.org/10.1016/j.ijdrr.2019.101252, 2019. 
Bruen, M., Krahe, P., Zappa, M., Olsson, J., Vehvilainen, B., Kok, K., and Daamen, K.: Visualizing Flood Forecasting Uncertainty: Some Current European EPS Platforms-COST731 Working Group 3, Atmos. Sci. Lett., 11, 92–99, https://doi.org/10.1002/asl.258, 2010. 
Buizza, R.: The Value of Probabilistic Prediction, Atmos. Sci. Lett., 9, 36–42, https://doi.org/10.1002/asl.170, 2008. 
Cloke, H. L. and Pappenberger, F.: Ensemble Flood Forecasting: A Review, J. Hydrol., 375, 613–26, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009. 
Download
Short summary
The Environment Agency (EA), responsible for flood risk management in England, is moving towards the use of probabilistic river flood forecasts. By showing the likelihood of future floods, they can allow earlier anticipation. But making decisions on probabilistic information is complex and interviews with EA decision-makers highlight the practical challenges and opportunities of this transition. We make recommendations to support a successful transition for flood early warning in England.
Altmetrics
Final-revised paper
Preprint