Articles | Volume 6, issue 4
https://doi.org/10.5194/gc-6-125-2023
Special issue:
https://doi.org/10.5194/gc-6-125-2023
GC Insights
 | 
05 Oct 2023
GC Insights |  | 05 Oct 2023

GC Insights: The crystal structures behind mineral properties – a case study of using TotBlocks in an undergraduate optical mineralogy lab

Derek D. V. Leung and Paige E. dePolo

Related authors

Where curling stones collide with rock physics: Cyclical damage accumulation and fatigue in granitoids
Derek D. V. Leung, Florian Fusseis, and Ian B. Butler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3499,https://doi.org/10.5194/egusphere-2025-3499, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules
Derek D. V. Leung and Paige E. dePolo
Eur. J. Mineral., 34, 523–538, https://doi.org/10.5194/ejm-34-523-2022,https://doi.org/10.5194/ejm-34-523-2022, 2022
Short summary

Cited articles

Boud, D.: Introduction: Making the move to peer learning, in: Peer Learning in Higher Education: Learning from & with Each Other, edited by: Boud, D., Cohen, R., and Sampson, J., Routledge, London, UK, 1–17, https://doi.org/10.4324/9781315042565, 2001. 
Bruner, J. S.: Toward a Theory of Instruction, Harvard University Press, Cambridge, Massachusetts, USA, ISBN-10 0674897013, ISBN-13 978-0674897014, 1966. 
Dyar, M. D., Gunter, M. E., Davis, J. C., and Odell, M. R. L.: Integration of new methods into teaching mineralogy, J. Geosci. Educ., 52, 23–30, 2004. 
Extremera, J., Vergara, D., Dávila, L. P., and Rubio, M. P.: Virtual and augmented reality environments to learn the fundamentals of crystallography, Crystals, 10, 456, https://doi.org/10.3390/cryst10060456, 2020. 
Fencl, H. and Huenink, A.: An exploration into the use of manipulatives to develop abstract reasoning in an introductory science course, Int. J. Schol. Teach. Learn., 1, 1–15, https://doi.org/10.20429/ijsotl.2007.010215, 2007. 
Download
Short summary
We used 3D-printed building blocks (TotBlocks) in an undergraduate optical mineralogy lab session to illustrate the links between crystal structures and the properties of minerals. Students built mica, pyroxene, and amphibole structures. We observed an improved understanding of cleavage (how minerals break) and pleochroism (how light interacts with minerals), but understanding did not improve with more abstract concepts. TotBlocks hold potential as a teaching tool in mineralogy classrooms.
Share
Special issue
Altmetrics
Final-revised paper
Preprint