Boud, D.: Introduction: Making the move to peer learning, in: Peer Learning
in Higher Education: Learning from & with Each Other, edited by: Boud,
D., Cohen, R., and Sampson, J., Routledge, London, UK, 1–17,
https://doi.org/10.4324/9781315042565, 2001.
Geyer, M. J.: Using interlocking toy building blocks to assess conceptual
understanding in chemistry, J. Chem. Educ., 94, 202–205,
https://doi.org/10.1021/acs.jchemed.6b00551, 2017.
He, F.-C., Liu, L.-B., and Li, X.-Y.: Molecular models constructed in an easy way:
Part 1. Models of tetrahedron, trigonal bipyramid, octahedron, pentagonal
bipyramid, and capped octahedron, J. Chem. Educ., 67, 556–558,
https://doi.org/10.1021/ed067p556, 1990a.
He, F.-C., Liu, L.-B., and Li, X.-Y.: Molecular models constructed in an easy way:
Part 2. Models constructed by using tetrahedral units as building blocks, J.
Chem. Educ., 67, 650–652, https://doi.org/10.1021/ed067p650, 1990b.
He, F.-C., Liu, L.-B., and Li, X.-Y.: Molecular models constructed in an easy way:
Part 3. Models constructed by using octahedral units as building blocks, J.
Chem. Educ., 71, 734–738, https://doi.org/10.1021/ed071p734, 1994.
Hollocher, K.: Building crystal structure ball models using pre-drilled
templates: sheet structures, tridymite, and cristobalite, in: Teaching
Mineralogy, edited by: Brady, J. B., Mogk, D. W., and Perkins III, D.,
Mineralogical Society of America, Washington, D.C., USA, 255–282, ISBN-10 0939950448,
ISBN-13 9780939950447 1997.
Horikoshi, R.: Teaching chemistry with LEGO
® bricks, Chem.
Teach. Int., 3, 239–255, https://doi.org/10.1515/cti-2020-0017, 2020.
Howell, M. E., Booth, C. S., Sikich, S. M., Helikar, T., Roston, R. L.,
Couch, B. A., and van Dijk, K.: Student understanding of DNA
structure-function relationships improves from using 3D learning modules
with dynamic 3D print models, Biochem. Mol. Biol. Edu., 47, 303–317,
https://doi.org/10.1002/bmb.21234, 2019.
Ishikawa, T. and Kastens, K. A.: Why some students have trouble with maps
and other spatial representations, J. Geosci. Educ., 53, 184–197,
https://doi.org/10.5408/1089-9995-53.2.184, 2005.
Jittivadhna, K., Ruenwongsa, P., and Panijpan, B.: Beyond textbook
illustrations: hand-held models of ordered DNA and protein structures as 3D
supplements to enhance student learning of helical biopolymers, Biochem.
Mol. Biol. Edu., 38, 359–364, https://doi.org/10.1002/bmb.20427, 2010.
Kaliakin, D. S., Zaari, R. R., and Varganov, S. A.: 3D printed potential and
free energy surfaces for teaching fundamental concepts in physical
chemistry, J. Chem. Educ., 92, 2106–2112,
https://doi.org/10.1021/acs.jchemed.5b00409, 2015.
Kolb, D. A. and Fry, R.: Towards an applied theory of experiential
learning, in: Theories of group processes, edited by: Cooper, C., John Wiley
and Sons, New York, 33–57, ISBN 10 0471171174, ISBN 13, 9780471171171, 1975.
Leung, D. D. V.: derekdvleung/totblocks: Totblocks 2022.05
(totblocks-2022.05), Zenodo [code], https://doi.org/10.5281/zenodo.5240816,
2022.
Leung, D. D. V.: “Reply to RC1”,
https://doi.org/10.5194/egusphere-2023-294-AC1, 2023.
Leung, D. D. V. and dePolo, P. E.: TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules, Eur. J. Mineral., 34, 523–538, https://doi.org/10.5194/ejm-34-523-2022, 2022a.
Leung, D. D. V. and dePolo, P. E.: Learning with TotBlocks: Communicating
the crystal structures of modular rock-forming minerals with 3D-printed
interlocking brick modules, TIB-AV Portal [video],
https://doi.org/10.5446/s_1236, 2022b.
Lesuer, R. J.: Incorporating tactile learning into periodic trend analysis
using three-dimensional printing, J. Chem. Educ., 96, 285–229,
https://doi.org/10.1021/acsami.1c06204, 2019.
Liben, L. S. and Titus, S. J.: The importance of spatial thinking for
geoscience education: insights from the crossroads of geoscience and
cognitive science, in: Earth and Mind II: A Synthesis of Research on
Thinking and Learning in the Geosciences, edited by: Kastens, K. A., and
Manduca, C. A., Geological Society of America Special Paper 486, 51–70,
https://doi.org/10.1130/2012.2486(10), 2012.
Melaku, S. and Dabke, R. B.: Interlocking toy building blocks as modules for
undergraduate introductory and general chemistry classroom teaching, J.
Chem. Educ., 98, 2465–2470, https://doi.org/10.1021/acs.jchemed.1c00001,
2021.
Melaku, S., Schreck, J. O., Griffin, K., and Dabke, R. B.: Interlocking toy
building blocks as hands-on learning modules for Blind and Visually Impaired
Chemistry Students, J. Chem. Educ., 93, 1049–1055, 2016.
Mogk, D. W.: Directed-discovery of crystal structures using ball and stick
models, in: Teaching Mineralogy, edited by: Brady, J. B., Mogk, D. W., and
Perkins III, D., Mineralogical Society of America, Washington, D.C., USA,
283–290, 1997.
Moyer, P. S., Bolyard, J. J., and Spikell, M. A.: What are virtual
manipulatives, Teach. Child. Math., 8, 372–377,
https://doi.org/10.5951/TCM.8.6.0372, 2002.
Neumann, F.: Vorlesungen über die Theorie der Elasticität der festen
Körper und des Lichtäthers, edited by: Meyer, O. E., B. G.
Teubner-Verlag, Leipzig, Germany, ISBN-10 0270359516,
ISBN-13 978-0270359510,
1885.
Rink, J. E.: Task Presentation in Pedagogy, Quest, 46, 270–280,
https://doi.org/10.1080/00336297.1994.10484126, 1994.
Rodenbough, P. P., Vanti, W. B., and Chan, S.-W.: 3D-printing
crystallographic unit cells for learning materials science and engineering,
J. Chem. Educ., 92, 1960–1962, https://doi.org/10.1021/acs.jchemed.5b00597,
2015.
Rosenshine, B. and Stevens, R.: Teaching functions, in: Handbook of
research on teaching, 3rd Edn., edited by: Wittrock, M.,
Macmillan, New York, USA, 376–391, ISBN-10 0029003105,
ISBN-13 978-0029003107, 1986.
Smiar, K. and Mendez. J. D.: Creating and using interactive, 3D-printed
models to improve student comprehension of the Bohr model of the atom, bond
polarity, and hybridization, J. Chem. Educ., 93, 1591–1594,
https://doi.org/10.1021/acs.jchemed.6b00297, 2016.
Smith, K. A., Sheppard, S. D., Johnson, D. W., and Johnson, R. T.:
Pedagogies of engagement: Classroom-based practices, J. Eng. Ed., 94,
87–101, 2005.
Tsui, C.-Y. and Treagust, D. F.: Introduction to multiple representations:
their importance in biology and biological education, in: Multiple
Representation in Biological Education, edited by: Treagust, D. F. and Tsui,
C.-Y., Springer, 3–18, https://doi.org/10.1007/978-94-007-4192-8_1, 2013.
Witzel, J. E.: Lego Stoichiometry, J. Chem. Educ., 79, 352A,
https://doi.org/10.1021/ed079p352, 2002.
Wood, P. A., Sarjeant, A. A., Bruno, I. J., Macrae, C. F., Maynard-Casely,
H. E., and Towler, M.: The next dimension of structural science
communication: simple 3D printing directly from a crystal structure,
CrystEngComm, 19, 690, https://doi.org/10.1039/c6ce02412b, 2017.
Woods, T. L., Reed, S., Hsi, S., Woods, J. A., and Woods, M. R.: Pilot study
using the augmented reality sandbox to teach topographic maps and surficial
processes in introductory geology labs, J. Geosci. Educ., 64, 199–214,
https://doi.org/10.5408/15-135.1, 2016.