Articles | Volume 7, issue 2
https://doi.org/10.5194/gc-7-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-7-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the impact of climate communication activities by scientists: what is known and necessary?
Frances Wijnen
Freudenthal Institute, Utrecht University, Utrecht, 3584 CC, the Netherlands
Madelijn Strick
Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, 3584 CC, the Netherlands
Freudenthal Institute, Utrecht University, Utrecht, 3584 CC, the Netherlands
Freudenthal Institute, Utrecht University, Utrecht, 3584 CC, the Netherlands
Related authors
No articles found.
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287, https://doi.org/10.5194/egusphere-2025-3287, 2025
Short summary
Short summary
We tracked the paths of novel, ultra-thin ocean drifters in the southern North Sea for over two months. By analysing their motion alongside environmental data, we identified how tides, wind, and waves each influence their movement. Using machine learning, we improved trajectory predictions, offering new insights into surface transport in coastal seas.
Erik van Sebille, Celine Weel, Rens Vliegenthart, and Mark Bos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3131, https://doi.org/10.5194/egusphere-2025-3131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Many climate scientists intuitively fear their credibility decreases when they engage in advocacy. We find that the opposite is the case. By surveying almost 1,000 Dutch adults, we found that the credibility of a fictional climate scientists who wrote an article about the greening of gardens was higher when that text included advocacy statements, compared to when it was 'neutral'. This is because personalization increases the goodwill of readers for the academic who writes a text.
Aike Vonk, Mark Bos, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-2216, https://doi.org/10.5194/egusphere-2025-2216, 2025
Short summary
Short summary
Research institutes communicate scientific findings through press releases, which journalists use to write news articles. We examined how journalists use content from press releases about ocean plastic research. Our findings show that they closely follow the press releases story, primarily quoting involved scientists without seeking external perspectives. Causing the focus to stay on researchers, personalizing science rather than addressing the broader societal dimensions of plastic pollution.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
Ocean Sci., 21, 945–964, https://doi.org/10.5194/os-21-945-2025, https://doi.org/10.5194/os-21-945-2025, 2025
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
Geosci. Commun., 8, 67–80, https://doi.org/10.5194/gc-8-67-2025, https://doi.org/10.5194/gc-8-67-2025, 2025
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025, https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris on the South Orkney Microcontinent. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025, https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter transport patterns and that commonly adopted approximations are not always adequate. This suggests that ideally coupled ocean–wave models should be used for surface particle transport simulations.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024, https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Cited articles
Ajzen, I.: The theory of planned behavior, Organ. Behav. Hum. Dec., 50, 179–211, https://doi.org/10.1016/0749-5978(91)90020-T, 1991.
Ajzen, I.: Nature and operation of attitudes, Annu. Rev. Psychol., 52, 27–58, https://doi.org/10.1146/annurev.psych.52.1.27, 2001.
Baram-Tsabari, A. and Lewenstein, B. V.: Preparing Scientists to Be Science Communicators, in: Preparing Informal Science Educators: Perspectives from Science Communication and Education, edited by: Patrick, P. G., Springer International Publishing, Cham, 437–471, https://doi.org/10.1007/978-3-319-50398-1_22, 2017.
Boon, W., de Haan, J., Duisterwinkel, C., Gould, L., Janssen, W., Jongsma, K., Milota, M., Radstake, M., Stevens, S., Strick, M., Swinkels, M., van Mil, M., van Sebille, E., Wanders, N., and Yerkes, M.: Meaningful public engagement in the context of open science: reflections from early and mid-career academics, Res. All, 6, 23, https://doi.org/10.14324/RFA.06.1.23, 2022.
Bucchi, M.: Of deficits, deviations and dialogues – Theories of public communication of science, in: Handbook of Public Communication of Science and Technology, edited by: Bucchi, M. and Trench, B., Routledge, London, 57–76, ISBN 9780203928240, 2008.
Burke, M., Ockwell, D., and Whitmarsh, L.: Participatory arts and affective engagement with climate change: The missing link in achieving climate compatible behaviour change?, Global Environ. Chang., 49, 95–105, https://doi.org/10.1016/j.gloenvcha.2018.02.007, 2018.
Calyx, C. and Low, J.: How a climate change sceptic politician changed their mind, J. Sci. Commun., 19, 1–12, https://doi.org/10.22323/2.19030304, 2020.
Cologna, V., Knutti, R., Oreskes, N., and Siegrist, M.: Majority of German citizens, US citizens and climate scientists support policy advocacy by climate researchers and expect greater political engagement, Environ. Res. Lett., 16, 1–11, https://doi.org/10.1088/1748-9326/abd4ac, 2021.
Corner, A. and Clarke, J.: Talking climate: From research to practice in public engagement, Springer International Publishing, https://doi.org/10.1007/978-3-319-46744-3, 2017.
Corner, A., Shaw, C., and Clarke, J.: Principles for effective communication and public engagement on climate change: a handbook for IPCC authors, Climate Outreach, Oxford, https://climateoutreach.org/content/uploads/dlm_uploads/2018/01/Climate-Outreach-IPCC-communications-handbook.pdf (last access: 12 February 2024), 2018.
Dechezleprêtre, A., Fabre, A., Kruse, T., Planterose, B., Chico, A. S., and Stantcheva, S.: Fighting Climate Change: International Attitudes Toward Climate Policies (no. w30265), National Bureau of Economic Research, Cambridge, MA, https://doi.org/10.3386/w30265, 2022.
Douglas, H.: Science, policy and the value-free ideal, University of Pittsburgh Press, https://doi.org/10.2307/j.ctt6wrc78, 2009.
Dziminska, M., Mendoza-Poudereux, I., Pellegrine, G., and Rowland, J.: Climate change and public perception. Citizens' proposals for better communication and involvement, J. Sci. Commun., 20, 1–20, https://doi.org/10.22323/2.20030209, 2021.
Elliott, K. and Resnik, D.: Science, policy, and the transparency of values, Environ. Health Persp., 122, 647–650, https://doi.org/10.1289/ehp.1408107, 2014.
Grand, A. and Sardo, M.: What works in the field? Evaluating informal science events, Front. Commun., 2, 1–6, https://doi.org/10.3389/fcomm.2017.00022, 2017.
Geiger, N., Swim, J., Fraser, J., and Flinner, K.: Catalyzing public engagement with climate change through informal science learning centers, Sci. Commun., 39, 221–249, https://doi.org/10.1177/1075547017697980, 2017.
Hassol, S. J.: Improving how scientists communicate about climate change, Eos T. Am. Geophys. Un., 89, 106–107, https://doi.org/10.1029/2008EO110002, 2008.
Hillier, J. K. and van Meeteren, M.: Co-RISK: a tool to co-create impactful university–industry projects for natural hazard risk mitigation, Geosci. Commun., 7, 35–56, https://doi.org/10.5194/gc-7-35-2024, 2024.
Hillier, J. K., Welsh, K. E., Stiller-Reeve, M., Priestley, R. K., Roop, H. A., Lanza, T., and Illingworth, S.: Editorial: Geoscience communication – planning to make it publishable, Geosci. Commun., 4, 493–506, https://doi.org/10.5194/gc-4-493-2021, 2021.
Illingworth, S. and Jack, K.: Rhyme and reason-using poetry to talk to underserved audiences about environmental change, Clim. Risk Manag., 19, 120–129, https://doi.org/10.1016/j.crm.2018.01.001, 2018.
Intergovernmental Panel on Climate Change (IPCC): Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, https://doi.org/10.1017/9781009157940, 2018.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
Jacobson, S., Seavey, J., and Mueller, R.: Integrated science and art education for creative climate change communication, Ecol. Soc., 21, 1–6, https://doi.org/10.5751/ES-08626-210330, 2016.
Jensen, E.: Highlighting the value of impact evaluation: enhancing informal science learning and public engagement theory and practice, J. Sci. Commun., 14, 1–14, 2015.
Kluczkovski, A., Cook, J., Downie, H. F., Fletcher, A., McLoughlin, L., Markwick, A., Bridle, S. L., Reynolds, C. J., Schmidt Rivera, X., Martindale, W., Frankowska, A., Moraes, M. M., Birkett, A. J., Summerton, S., Green, R., Fennell, J. T., Snith, P., Ingram, J., Langley, I., Yates, L., and Ajagun-Brauns, J.: Interacting with members of the public to discuss the impact of food choices on climate change-experiences from two UK public engagement events, Sustainability, 12, 1–21, https://doi.org/10.3390/su12062323, 2020.
Kotcher, J., Myers, T., Vraga, E., Stenhouse, H., and Maiback, E.: Does engagement in advocacy hurt the credibility of scientists? Results from a randomized national survey experiment, Environ. Commun., 11, 415–429, https://doi.org/10.1080/17524032.2016.1275736, 2017.
Kumpu, V.: What is public engagement and how does it help to address climate change? A review of climate communication research, Environ. Commun., 16, 304–316, https://doi.org/10.1080/17524032.2022.2055601, 2022.
Lackey, R.: Science, scientists, and policy advocacy, Conserv. Biol., 21, 12–17, https://doi.org/10.1111/j.1523-1739.2006.00639.x, 2007.
Lewandowsky, S., Ecker, U., Seifert, C., Schwarz, N., and Cook, J.: Misinformation and its correction: Continued influence and successful debiasing, Psychol. Sci. Publ. Int., 13, 106–131, 2012.
Lubchenco, J.: Entering the century of the environment: a new social contract for science, Science, 279, 491–497, https://doi.org/10.1126/science.279.5350.491, 1998.
Lubchenco, J.: Delivering on science's social contract, Mich. J. Sustain., 5, 95–108, https://doi.org/10.3998/mjs.12333712.0005.106, 2017.
Luís, S., Lima, M., Roseta-Palma, C., Rodrigues, N., Sousa, L., Freitas, F., Alves, F., Lillebø, A., Parrod, C., Jolivet, V., Paramana, T., Alexandrakis, G., and Poulos, S.: Psychosocial drivers for change: Understanding and promoting stakeholder engagement in local adaptation to climate change in three European Mediterranean case studies, J. Environ. Manage., 223, 165–174, https://doi.org/10.1016/j.jenvman.2018.06.020, 2018.
Metcalfe, J.: Comparing science communication theory with practice: An assessment and critique using Australian data, Public Underst. Sci., 28, 382–400, https://doi.org/10.1177/0963662518821022, 2019.
Meyer, M.: The Rise of the Knowledge Broker, Sci. Commun., 32, 118–127, https://doi.org/10.1177/1075547009359797, 2010.
Nelson, M. and Vucetich, J.: On advocacy by environmental scientists: What, whether, why, and how, Conserv. Biol., 23, 1090–1101, https://doi.org/10.1111/j.1523-1739.2009.01250.x, 2009.
Nielsen, L.: Science and advocacy are different – And we need to keep them that way, Hum. Dimens. Wildl., 6, 39–47, https://doi.org/10.1080/10871200152668689, 2001.
Oosterman, J.: Making climate action meaningful: Communication practices in the New Zealand climate movement, New Zealand Sociol., 31, 131–157, 2016.
Pathak, M., Roy, J., Patel, S., Some, S., Vyas, P., Das, N., and Shukla, P.: Communicating climate change findings from IPCC reports: insights from outreach events in India, Climatic Change, 168, 1–14, https://doi.org/10.1007/s10584-021-03224-8, 2021.
Peeters, W., Land-Zandstra, A., and Strick, M.: Een nieuwe aanpak voor het meten van impact in de wetenschapscommunicatie: theoretisch kader en praktische uitwerking [A new approach to measuring impact in science communication: A theoretical framework and practical elaboration], Tijdschr. Communwet., 50, 231–250, https://doi.org/10.5117/TCW2022.3.006.PEET, 2022.
Peltola, T., Kaljonen, M., and Kettunen, M.: Embodied public experiments on sustainable eating: demonstrating alternative proteins in Finnish schools, Sustainability: Sci., Pract. Policy, 16, 184–196, https://doi.org/10.1080/15487733.2020.1789268, 2020.
Rozance, M. A., Krosby, M., Meadow, A. M., Snover, A., Ferguson, D. B., and Owen, G.: Building capacity for societally engaged climate science by transforming science training, Environ. Res. Lett., 15, 125008, https://doi.org/10.1088/1748-9326/abc27a, 2020.
Schmidt, G.: What should climate scientists advocate for?, B. Atom. Sci., 71, 70–74, https://doi.org/10.1177/0096340214563677, 2015.
Schneider, R. O.: Climate change: an emergency management perspective, Disaster Prev. Manag., 20, 53–62, https://doi.org/10.1108/09653561111111081, 2011.
Seethaler, S., Evans, J., Gere, C., and Rajagopalan, R.: Science, values, and science communication: Competencies for pushing beyond the deficit model, Sci. Commun., 41, 378–388, https://doi.org/10.1177/1075547019847484, 2019.
Simis, M. J., Madden, H., Cacciatore, M. A., and Yeo, S. K.: The lure of rationality: Why does the deficit model persist in science communication?, Public Underst. Sci., 25, 400–414, https://doi.org/10.1177/0963662516629749, 2016.
van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D., and Maibach, E. W.: The Scientific Consensus on Climate Change as a Gateway Belief: Experimental Evidence, PLoS ONE, 10, e0118489, https://doi.org/10.1371/journal.pone.0118489, 2015.
Van Swol, Ly., Prahl, A., and Kolb, M.: The effects of discussion of familiar or non-familiar information and opinions of anthropogenic climate change, Environ. Commun., 13, 1128–1142, https://doi.org/10.1080/17524032.2019.1610022, 2019.
Whitmarsh, L., O'Neill, S., and Lorenzoni, I.: Public engagement with climate change: what do we know, and where do we go from here?, J. Media Cult. Politics, 9, 7–25, https://doi.org/10.1386/macp.9.1.7_1, 2013.
Wilkinson, C. and Weitkamp, E.: Evidencing Impact: The Challenges of Mapping Impacts from Public Engagement and Communication [Blog], https://blogs.lse.ac.uk/
impactofsocialsciences/2016/06/17/evidencing-impact-the-
challenges-of-mapping-impacts-from-public-engagement-and-communication/ (last access: 12 February 2024), 2016.
Wynne, B.: Public engagement as a means of restoring public trust in science – Hitting the notes, but missing the music?, Community Genet., 9, 211–220, https://doi.org/10.1159/000092659, 2006.
Ziegler, R., Hedder, I., and Fischer, L.: Evaluation of science communication: Current practices, challenges, and future implications, Front. Commun., 6, 1–6, https://doi.org/10.3389/fcomm.2021.669744, 2021.
Executive editor
Engaging a broad public in climate sciences is crucial for educating and motivating action. In turn, assessing communication initiatives can contribute to improving these activities for all involved. Through a systematic literature review, the authors emphasise the scarcity of peer-reviewed publications evaluating the outcomes of scientists' science communication efforts. The paper underscores the need to transparently assess these activities, whether successful or not, in order to advance the field. Although the focus of this paper is on public engagement in climate science, the implications extend to various geoscience domains.
Engaging a broad public in climate sciences is crucial for educating and motivating action. In...
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
Climate scientists are urged to communicate climate science; there is very little evidence about...
Altmetrics
Final-revised paper
Preprint