Articles | Volume 7, issue 3
https://doi.org/10.5194/gc-7-201-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-7-201-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The (non)effect of personalization in climate texts on the credibility of climate scientists: a case study on sustainable travel
Anna Leerink
Freudenthal Institute, Utrecht University, 3584CC Utrecht, the Netherlands
Freudenthal Institute, Utrecht University, 3584CC Utrecht, the Netherlands
Daan Reijnders
Institute for Marine and Atmospheric Research, Utrecht University, 3584CC Utrecht, the Netherlands
Freudenthal Institute, Utrecht University, 3584CC Utrecht, the Netherlands
Institute for Marine and Atmospheric Research, Utrecht University, 3584CC Utrecht, the Netherlands
Related authors
No articles found.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1649, https://doi.org/10.5194/egusphere-2024-1649, 2024
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage broader audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024, https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Erik van Sebille, Philippe Delandmeter, John Schofield, Britta Denise Hardesty, Jen Jones, and Andy Donnelly
Ocean Sci., 15, 1341–1349, https://doi.org/10.5194/os-15-1341-2019, https://doi.org/10.5194/os-15-1341-2019, 2019
Short summary
Short summary
The Galápagos Archipelago and Galápagos Marine Reserve are among the world's most iconic wildlife refuges. Yet, plastic litter is now found even in this remote archipelago. It is unclear where this plastic originates from. In this study, we show that remote coastal sources of plastic pollution are fairly localized and limited to South American and Central American coastlines. Identifying how plastic ends up in the Galápagos aids integrated management opportunities to reduce plastic pollution.
Philippe Delandmeter and Erik van Sebille
Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, https://doi.org/10.5194/gmd-12-3571-2019, 2019
Short summary
Short summary
Parcels is a framework to compute how ocean currents transport
stuffsuch as plankton and plastic around. In the latest version 2.0 of Parcels, we focus on more accurate interpolation schemes and implement methods to seamlessly combine data from different sources (such as winds and currents, possibly in different regions). We show that this framework is very efficient for tracking how microplastic is transported through the North Sea into the Arctic.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Michael Lange and Erik van Sebille
Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, https://doi.org/10.5194/gmd-10-4175-2017, 2017
Short summary
Short summary
Here, we present version 0.9 of Parcels (Probably A Really Computationally Efficient Lagrangian Simulator). Parcels is an experimental prototype code aimed at exploring novel approaches for Lagrangian tracking of virtual ocean particles in the petascale age. The modularity, flexibility and scalability will allow the code to be used to track water, nutrients, microbes, plankton, plastic and even fish.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
Related subject area
Subject: Geoscience engagement | Keyword: The role of scientists
Geoscientists' views about science communication: predicting willingness to communicate geoscience
Communicating climate change in a “post-factual” society: lessons learned from the Pole to Paris campaign
Joana Rodrigues, Cecília Castro, Elsa Costa e Silva, and Diamantino Insua Pereira
Geosci. Commun., 6, 15–25, https://doi.org/10.5194/gc-6-15-2023, https://doi.org/10.5194/gc-6-15-2023, 2023
Short summary
Short summary
We analysed geoscientists' representations and attitudes to science communication. To understand which obstacles and factors can have an impact on predicting public engagement, we conducted a survey of Portuguese geoscientists. We concluded that what matters are factors like the area of expertise, personal experience, institutional attitude, lack of financial support and personal satisfaction. These should be the main factors to consider when designing policies to promote public engagement.
Erlend M. Knudsen and Oria J. de Bolsée
Geosci. Commun., 2, 83–93, https://doi.org/10.5194/gc-2-83-2019, https://doi.org/10.5194/gc-2-83-2019, 2019
Short summary
Short summary
The politicization of climate change science has increased over the last decades. In this commentary, we argue that the role of climate scientists in our societies needs to adapt to this development. We share our experiences from leaving our offices to interact with diversified people on our running and cycle paths from the polar regions to the Paris climate summit. Based on these experiences, we suggest key components for successful communication with non-academic audiences in the 21st century.
Cited articles
Avraamidou, L. and Osborne, J.: The Role of Narrative in Communicating Science, Int. J. Sci. Educ., 31, 1683–1707, https://doi.org/10.1080/09500690802380695, 2009.
Bouman, T., Van Der Werff, E., Perlaviciute, G., and Steg, L.: Environmental values and identities at the personal and group level, Current Opinion in Behavioral Sciences, 42, 47–53, https://doi.org/10.1016/j.cobeha.2021.02.022, 2021.
Cerf, M., Matz, S. C., and MacIver, M. A.: Participating in a climate prediction market increases concern about global warming, Nat. Clim. Change, 13, 523–531, https://doi.org/10.1038/s41558-023-01679-4, 2023.
Clarke, J., Webster, R., and Corner, A.: Theory of change: creating a social mandate for climate action, Climate Outreach, Oxford, https://climateoutreach.org/reports/theory-of-change/ (last access: 15 July 2024), 2020.
Cologna, V., Knutti, R., Oreskes, N., and Siegrist, M.: Majority of German citizens, US citizens and climate scientists support policy advocacy by climate researchers and expect greater political engagement, Environ. Res. Lett., 16, 024011, https://doi.org/10.1088/1748-9326/abd4ac, 2021.
Dahlstrom, M. F.: Using narratives and storytelling to communicate science with nonexpert audiences, P. Natl. Acad. Sci. USA, 111, 13614–13620, https://doi.org/10.1073/pnas.1320645111, 2014.
Dong, Y., Hu, S., and Zhu, J.: From source credibility to risk perception: How and when climate information matters to action, Resour. Conserv. Recy., 136, 410–417, https://doi.org/10.1016/j.resconrec.2018.05.012, 2018.
Dutke, S., Grefe, A. C., and Leopold, C.: Learning from scientific texts: personalizing the text increases transfer performance and task involvement, Eur. J. Psychol. Educ., 31, 499–513, https://doi.org/10.1007/s10212-015-0281-6, 2016.
Edelman Trust Institute: 2024 Edelman Trust Barometer, https://www.edelman.com/trust/2024/trust-barometer (last access: 3 September 2024), 2024.
Fage-Butler, A., Ledderer, L., and Nielsen, K. H.: Public trust and mistrust of climate science: A meta-narrative review, Public Underst. Sci., 31, 832–846, https://doi.org/10.1177/09636625221110028, 2022.
Fischhoff, B.: Nonpersuasive Communication about Matters of Greatest Urgency: Climate Change, Environ. Sci. Technol., 41, 7204–7208, https://doi.org/10.1021/es0726411, 2007.
Ginns, P. and Fraser, J.: Personalization enhances learning anatomy terms, Med. Teach., 32, 776–778, https://doi.org/10.3109/01421591003692714, 2010.
Glaser, M., Garsoffky, B., and Schwan, S.: Narrative-based learning: Possible benefits and problems, COMM, 34, 429–447, https://doi.org/10.1515/COMM.2009.026, 2009.
Heo, M., Kim, N., and Faith, M. S.: Statistical power as a function of Cronbach alpha of instrument questionnaire items, BMC Med. Res. Methodol., 15, 86, https://doi.org/10.1186/s12874-015-0070-6, 2015.
Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure, Scand. J. Stat., 6, 65–70, 1979.
Kotcher, J. E., Myers, T. A., Vraga, E. K., Stenhouse, N., and Maibach, E. W.: Does Engagement in Advocacy Hurt the Credibility of Scientists? Results from a Randomized National Survey Experiment, Environ. Commun., 11, 415–429, https://doi.org/10.1080/17524032.2016.1275736, 2017.
Lu, H.: The Effects of Emotional Appeals and Gain Versus Loss Framing in Communicating Sea Star Wasting Disease, Sci. Commun., 38, 143–169, https://doi.org/10.1177/1075547015619173, 2016.
Mayer, R. E.: Principles Based on Social Cues in Multimedia Learning: Personalization, Voice, Image, and Embodiment Principles, in: The Cambridge Handbook of Multimedia Learning, edited by: Mayer, R. E., Cambridge University Press, 345–368, https://doi.org/10.1017/CBO9781139547369.017, 2014.
Mouratidou, M., Donald, W. E., Mohandas, N. P., and Ma, Y.: Exploring the relationship between self-perceived academic performance and entrepreneurial intention: the moderating roles of serious leisure, perceived stress and gender, Higher Education, Skills and Work-Based Learning, https://doi.org/10.1108/HESWBL-02-2024-0053, online first, 2024.
nmalkin, charlesbaynham, alaskamike, Maocx, rnikiforova, and valentynbez: nmalkin/plot-likert, GitHub [code], https://github.com/nmalkin/plot-likert/ (last access: 15 July 2024), 2024.
Norris, S. P., Guilbert, S. M., Smith, M. L., Hakimelahi, S., and Phillips, L. M.: A theoretical framework for narrative explanation in science, Sci. Ed., 89, 535–563, https://doi.org/10.1002/sce.20063, 2005.
Peeters, W., Land-Zandstra, A., and Strick, M.: Een nieuwe aanpak voor het meten van impact in de wetenschapscommunicatie: theoretisch kader en praktische uitwerking, Tijdschr. Communicatiewetenschap, 50, 231–250, https://doi.org/10.5117/TCW2022.3.006.PEET, 2022.
Pielke Jr., R. A.: The Honest Broker: Making Sense of Science in Policy and Politics, Cambridge University Press, https://doi.org/10.1017/CBO9780511818110, 2007.
Sangers, N. L., Evers-Vermeul, J., Sanders, T. J. M., and Hoeken, H.: Vivid elements in Dutch educational texts, NI, 30, 185–209, https://doi.org/10.1075/ni.18090.san, 2020.
Saran, I., Fink, G., and McConnell, M.: How does anonymous online peer communication affect prevention behavior? Evidence from a laboratory experiment, PLOS ONE, 13, e0207679, https://doi.org/10.1371/journal.pone.0207679, 2018.
Schiffer, H. and Guerra, A.: Electricity and Vital Force: Discussing the Nature of Science Through a Historical Narrative, Sci. Educ., 24, 409–434, https://doi.org/10.1007/s11191-014-9718-6, 2015.
Scott, D. and Willits, F. K.: Environmental Attitudes and Behavior: A Pennsylvania Survey, Environ. Behav., 26, 239–260, https://doi.org/10.1177/001391659402600206, 1994.
Seethaler, S., Evans, J. H., Gere, C., and Rajagopalan, R. M.: Science, Values, and Science Communication: Competencies for Pushing Beyond the Deficit Model, Sci. Commun., 41, 378–388, https://doi.org/10.1177/1075547019847484, 2019.
Somerville, R. C. J. and Hassol, S. J.: Communicating the science of climate change, Phys. Today, 64, 48–53, https://doi.org/10.1063/PT.3.1296, 2011.
van Sebille, E.: Data and analysis script for “The (non)effect of personalization in climate texts on credibility of climate scientists: A case study on sustainable travel” (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.12579018, 2024.
Vonk, A. N., Bos, M., Smeets, I., and van Sebille, E.: A comparative study of frames and narratives identified within scientific press releases on ocean climate change and ocean plastic, JCOM, 23, A01, https://doi.org/10.22323/2.23010201, 2024.
Yang, Y. and Hobbs, J. E.: The Power of Stories: Narratives and Information Framing Effects in Science Communication, Am. J. Agr. Econom., 102, 1271–1296, https://doi.org/10.1002/ajae.12078, 2020.
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Climate scientists who communicate to a broad audience may be reluctant to write in a more...
Altmetrics
Final-revised paper
Preprint