Articles | Volume 3, issue 2
https://doi.org/10.5194/gc-3-279-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-3-279-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of an educational program on earthquake awareness and preparedness in Nepal
Shiba Subedi
CORRESPONDING AUTHOR
Institute of Earth Sciences, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
György Hetényi
Institute of Earth Sciences, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
Ross Shackleton
Institute of Geography and Sustainability, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
Related authors
No articles found.
Andrew Greenwood, György Hetényi, Ludovic Baron, Alberto Zanetti, Othmar Müntener, and the MOS field team
Sci. Dril., 33, 219–236, https://doi.org/10.5194/sd-33-219-2024, https://doi.org/10.5194/sd-33-219-2024, 2024
Short summary
Short summary
A set of seismic reflection surveys were conducted in May 2019 in the Ossola Valley, Western Italian Alps, to image the geologic structure below two proposed boreholes. The boreholes plan to penetrate the upper 2 km of the lower continental crust, a zone of much scientific interest. The seismic surveys have defined the valley structure to depths of 550 m, determined the dip of geological banding, and ruled out the possibility of major geologic drilling hazards that could be encountered.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Micol Genazzi, Antoine Guisan, and Ross T. Shackleton
Geogr. Helv., 77, 443–453, https://doi.org/10.5194/gh-77-443-2022, https://doi.org/10.5194/gh-77-443-2022, 2022
Short summary
Short summary
This paper assesses peoples' knowledge and perceptions of the invasive palm (Trachycarpus fortunei) in Ticino, Switzerland. Such information is important for guiding decision-making and management planning. In general, although the palm induces positive perceptions in most respondents, the majority of people realise the threat that invasions pose to the region. Therefore, most respondents supported the regulations and management for this popular ornamental plant.
Jaroslava Plomerová, Helena Žlebčíková, György Hetényi, Luděk Vecsey, Vladislav Babuška, and AlpArray-EASI and AlpArray working
groups
Solid Earth, 13, 251–270, https://doi.org/10.5194/se-13-251-2022, https://doi.org/10.5194/se-13-251-2022, 2022
Short summary
Short summary
We present high-resolution tomography images of upper mantle structure beneath the E Alps and the adjacent Bohemian Massif. The northward-dipping lithosphere, imaged down to ∼200 km beneath the E Alps without signs of delamination, is probably formed by a mixture of a fragment of detached European plate and the Adriatic plate subductions. A detached high-velocity anomaly, sub-parallel to and distinct from the E Alps heterogeneity, is imaged at ∼100–200 km beneath the southern part of the BM.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Jiří Kvapil, Jaroslava Plomerová, Hana Kampfová Exnerová, Vladislav Babuška, György Hetényi, and AlpArray Working Group
Solid Earth, 12, 1051–1074, https://doi.org/10.5194/se-12-1051-2021, https://doi.org/10.5194/se-12-1051-2021, 2021
Short summary
Short summary
This paper presents a high-resolution 3-D shear wave velocity (vS) model of the Bohemian Massif crust imaged from high-density data and enhanced depth sensitivity of tomographic inversion. The dominant features of the model are relatively higher vS in the upper crust than in its surrounding, a distinct intra-crustal interface, and a velocity decrease in the lower part of the crust. The low vS in the lower part of the crust is explained by the anisotropic fabric of the lower crust.
Marcel Tesch, Johannes Stampa, Thomas Meier, Edi Kissling, György Hetényi, Wolfgang Friederich, Michael Weber, Ben Heit, and the AlpArray Working Group
Solid Earth Discuss., https://doi.org/10.5194/se-2020-122, https://doi.org/10.5194/se-2020-122, 2020
Publication in SE not foreseen
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019, https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Short summary
By utilising both the observed gravity field of the Alps and their forelands and indications from deep seismic surveys, we were able to produce a 3-D structural model of the region that indicates the distribution of densities within the lithosphere. We found that the present-day Adriatic crust is both thinner and denser than the European crust and that the properties of Alpine crust are strongly linked to their provenance.
Mattia Pistone, Othmar Müntener, Luca Ziberna, György Hetényi, and Alberto Zanetti
Sci. Dril., 23, 47–56, https://doi.org/10.5194/sd-23-47-2017, https://doi.org/10.5194/sd-23-47-2017, 2017
Short summary
Short summary
The Ivrea–Verbano Zone is the most complete, time-integrated crust–upper mantle archive in the world. It is a unique target for assembling data on the deep crust and Moho transition zone to unravel the formation, evolution, and modification of the continental crust through space and time across the Earth. Four drilling operations in the Ivrea-Verbano Zone crustal section represent the scientifically most promising solution to achieve the major goals of DIVE Project.
Irene Molinari, John Clinton, Edi Kissling, György Hetényi, Domenico Giardini, Josip Stipčević, Iva Dasović, Marijan Herak, Vesna Šipka, Zoltán Wéber, Zoltán Gráczer, Stefano Solarino, the Swiss-AlpArray Field Team, and the AlpArray Working Group
Adv. Geosci., 43, 15–29, https://doi.org/10.5194/adgeo-43-15-2016, https://doi.org/10.5194/adgeo-43-15-2016, 2016
Short summary
Short summary
AlpArray is a collaborative seismological project in Europe that includes ~ 50 research institutes and seismological observatories. At its heart is the collection of top-quality seismological data from a dense network of stations in the Alpine region: the AlpArray Seismic Network (AASN). We report the Swiss contribution: site selections, installation, data quality and management. We deployed 27 temporary BB stations across 5 countries as result of a fruitful collaboration between 5 institutes.
Florian Fuchs, Petr Kolínský, Gidera Gröschl, Götz Bokelmann, and the AlpArray Working Group
Adv. Geosci., 43, 1–13, https://doi.org/10.5194/adgeo-43-1-2016, https://doi.org/10.5194/adgeo-43-1-2016, 2016
Short summary
Short summary
For comparison and as guideline for future seismic experiments we describe our efforts during the installation of thirty temporary seismic stations in Eastern Austria and Western Slovakia. The stations – deployed in the framework of the AlpArray project – are commonly placed in abandoned or unused cellars or buildings. We describe the technical realization of the deployment and discuss the seismic noise conditions at each site and potential relations to geology or station design.
Cited articles
Ambraseys, N. and Jackson, D.: A note on early earthquakes in northern India and southern Tibet, Curr. Sci., 84, 570–582, 2003.
Bollinger, L., Tapponnier, P., Sapkota, S. N., and Klinger, Y.: Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake?, Earth Planets Space, 68, 12, https://doi.org/10.1186/s40623-016-0389-1, 2016.
Brody, S. D.: Are we learning to make better plans? A longitudinal analysis of plan quality associated with natural hazards, J. Plan. Educ. Res., 23, 191–201, 2003.
Chaulagain, H., Gautam, D., and Rodrigues, H.: Revisiting major historical earthquakes in Nepal: Overview of 1833, 1934, 1980, 1988, 2011, and 2015 seismic events, in: Impacts and Insights of the Gorkha Earthquake, edited by: Gautam, D. and Rodrigues, H.,
Elsevier, 1–17, https://doi.org/10.1016/B978-0-12-812808-4.00001-8,
2018.
CIESIN and CIAT (Center for International Earth Science Information Network, Columbia
University; and Centro Internacional de Agricultura Tropical): Gridded Population of the World (GPW), v3,
https://doi.org/10.7927/H4XK8CG2,
2005.
Cole, E., Keller, R. P., and Garbach, K.: Risk of invasive species spread by recreational boaters remains high despite widespread adoption of conservation behaviors, J. Environ. Manage., 229, 112–119, 2019.
De Dominicis, S., Fornara, F., Cancellieri, U. G., Twigger-Ross, C., and Bonaiuto, M.: We are at risk, and so what? Place attachment, environmental risk perceptions and preventive coping behaviours, J. Environ. Psychol., 43, 66–78, 2015.
Dixit, A. M., Yatabe, R., Dahal, R. K., and Bhandary, N. P.: Initiatives for earthquake disaster risk management in the Kathmandu Valley, Natural Hazards, 69, 631–654, 2013.
Dixit, A. M., Yatabe, R., Dahal, R. K., and Bhandary, N. P.: Public school earthquake safety program in Nepal, Geomat. Nat. Haz. Risk, 5, 293–319, 2014.
Estévez, R. A., Anderson, C. B., Pizarro, J. C., and Burgman, M. A.: Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management, Conserv. Biol., 29, 19–30, 2015.
Falk, J. H. and Dierking, L. D.: Lessons without limit: How free-choice learning is transforming education, Rowman Altamira, Interciencia, 27, 62–65, 2002.
Godschalk, D. R.: Urban hazard mitigation: creating resilient cities, Nat. Hazards Rev., 4, 136–143, 2003.
Hall, J. C. and Theriot, M. T.: Developing multicultural awareness, knowledge, and skills: Diversity training makes a difference?, Multicultural Perspectives, 18, 35–41, 2016.
Hungerford, H. R. and Volk, T. L.: Changing learner behavior through environmental education, J. Environ. Educ., 21, 8–21,
https://doi.org/10.1080/00958964.1990.10753743, 1990.
IRGC: Risk Governance: Towards an Integrative Approach, Geneva, White Paper, No. 1, 2005.
Lee, T. M., Markowitz, E. M., Howe, P. D., Ko, C. Y., and Leiserowitz, A. A.: Predictors of public climate change awareness and risk perception around the world, Nat. Clim. Change, 5, 1014–1020, 2015.
Lehman, D. R. and Taylor, S. E.: Date with an earthquake: Coping with a probable, unpredictable disaster, Pers. Soc. Psychol. B., 13, 546–555, 1987.
National Research Council: A safer future: Reducing the impacts of natural disasters, National Academies Press, Kathmandu, Nepal, 1991.
Ndugwa Kabwama, S. and Berg-Beckhoff, G.: The association between HIV/AIDS-related knowledge and perception of risk for infection: a systematic review, Perspect. Public Heal., 135, 299–308, 2015.
Noroozinejad, G., Yarmohamadi, M., Bazrafkan, F., Sehat, M., Rezazadeh, M., and Ahmadi, K.: Perceived risk modifies the effect of HIV knowledge on sexual risk behaviors, Frontiers in Public Health, 1, 33, https://doi.org/10.3389/fpubh.2013.00033, 2013.
NPC: Post Disaster Needs Assessment, Sector Reports, National Planning Commission, Government of Nepal, Kathmandu, 2015.
O'Keefe, G. O. B. P. and Swords, Z. G. J.: Approaching disaster management through social learning, Disaster Prev. Manag., 19, 498–508, 2010.
Petros, P.: Risk perception, HIV/AIDS related knowledge, attitude and practice of the university community: The case of Ethiopian Civil Service College, HIV and AIDS Review, 13, 26–32, 2014.
Reed, M. S., Evely, A. C., Cundill, G., Fazey, I., Glass, J., Laing, A., Newig, J., Parrish, B., Prell, C., Raymond, C., and Stringer, L. C.: What is social learning?, Ecol. Soc., 15, R1, available at: http://www.ecologyandsociety.org/vol15/iss4/resp1/ (last access: 21 September 2020), 2010.
Reintjes, R., Das, E., Klemm, C., Richardus, J. H., Keßler, V., and Ahmad, A.: “Pandemic Public Health Paradox”: time series analysis of the 2009/10 Influenza A/H1N1 epidemiology, media attention, risk perception and public reactions in 5 European countries, PloS one, 11, e0151258, https://doi.org/10.1371/journal.pone.0151258, 2016.
Shackleton, R. T., Richardson, D. M., Shackleton, C. M., Bennett, B., Crowley, S. L., Dehnen-Schmutz, K., Estévez, R. A., Fischer, A., Kueffer, C., Kull, C. A., and Marchante, E.: Explaining people's perceptions of invasive alien species: a conceptual framework, J. Environ. Manage., 229, 10–26, 2019.
Stevens, V. L. and Avouac, J. P.: Millenary Mw 9.0 earthquakes required by geodetic strain in the Himalaya, Geophys. Res. Lett., 43, 1118–1123, https://doi.org/10.1002/2015GL067336, 2016.
Stevens, V. L., Shrestha, S. N., and Maharjan, D. K.: Probabilistic Seismic Hazard Assessment of Nepal, B. Seismol. Soc. Am., 108, 3488–3510, 2018.
Stringer, E. M., Sinkala, M., Kumwenda, R., Chapman, V., Mwale, A., Vermund, S. H., and Stringer, J. S.: Personal risk perception, HIV knowledge and risk avoidance behavior, and their relationships to actual HIV serostatus in an urban African obstetric population, Jaids – J. Acq. imm. def., 35, 60–66, https://doi.org/10.1097/00126334-200401010-00009, 2004.
Subedi, S., Hetényi, G., Denton, P., and Sauron, A.: Seismology at School in Nepal: a program for educational and citizen seismology through a low-cost seismic network, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.00073, 2020.
Tanaka, K.: The impact of disaster education on public preparation and mitigation for earthquakes: a cross-country comparison between Fukui, Japan and the San Francisco Bay Area, California, USA, Appl. Geogr., 25, 201–225, 2005.
Torani, S., Majd, P. M., Maroufi, S. S., Dowlati, M., and Sheikhi, R. A.: The importance of education on disasters and emergencies: A review article, Journal of education and health promotion, 8, 85, https://doi.org/10.4103/jehp.jehp_262_18, 2019.
Turner, R. H.: Earthquake prediction and public policy: Disillusions from a National Academy of Sciences report (1), Mass Emergencies, 1, 179–202, 1976.
Weinstein, N. D.: The precaution adoption process, Health Psychol., 7, 355–386, https://doi.org/10.1037/0278-6133.7.4.355, 1988.
Short summary
We study the impact of an educational seismology program on earthquake awareness and preparedness in Nepal. We see that educational activities implemented in schools are effective at raising awareness levels and in improving adaptive capacities and preparedness for future earthquakes. Knowledge also reached the broader community though social learning, leading to broadscale awareness. The result observed in this study is encouraging for the continuation and expansion of the program.
We study the impact of an educational seismology program on earthquake awareness and...
Altmetrics
Final-revised paper
Preprint