Articles | Volume 3, issue 2
https://doi.org/10.5194/gc-3-233-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-3-233-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Novel index to comprehensively evaluate air cleanliness: the Clean aIr Index (CII)
Tomohiro O. Sato
Terahertz Technology Research Center, National Institute of Information and Communications Technology, Koganei, 184-8795 Tokyo, Japan
Takeshi Kuroda
Department of Geophysics, Tohoku University, Sendai, 980-8578 Miyagi, Japan
Terahertz Technology Research Center, National Institute of Information and Communications Technology, Koganei, 184-8795 Tokyo, Japan
Yasuko Kasai
CORRESPONDING AUTHOR
Terahertz Technology Research Center, National Institute of Information and Communications Technology, Koganei, 184-8795 Tokyo, Japan
Doctoral and Master's Programs in Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 Ibaraki, Japan
Related authors
Yajun Xu, Tomohiro O. Sato, Ayano Nakamura, Tamaki Fujinawa, Suyun Wang, and Yasuko Kasai
EGUsphere, https://doi.org/10.5194/egusphere-2024-194, https://doi.org/10.5194/egusphere-2024-194, 2024
Preprint withdrawn
Short summary
Short summary
Usually, the vertical column density of NO2 is obtained by converting the slant column density derived from the measured spectra using an air mass factor (AMF). This work proposes two deep neural network models for calculating the tropospheric AMF and altitude-dependent AMF. Experiments shown that the RMSPE and computation time are approximately 30 times smaller and two times shorter compared to the traditional method.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Tamaki Fujinawa, Tomohiro O. Sato, Takayoshi Yamada, Seidai Nara, Yuki Uchiyama, Kodai Takahashi, Naohiro Yoshida, and Yasuko Kasai
Atmos. Meas. Tech., 13, 2119–2129, https://doi.org/10.5194/amt-13-2119-2020, https://doi.org/10.5194/amt-13-2119-2020, 2020
Short summary
Short summary
We performed an error analysis of SMILES observations for acetonitrile and a validation using the MLS observations by extracting the coincident points between SMILES and MLS data. The major error sources for the SMILES observations were quantitatively estimated. At upper pressure levels the difference between the two datasets increased because of an uncertainty in MLS observations. The results showed that SMILES has an advantage in measuring acetonitrile in the upper stratosphere and mesosphere.
Tomohiro O. Sato, Takao M. Sato, Hideo Sagawa, Katsuyuki Noguchi, Naoko Saitoh, Hitoshi Irie, Kazuyuki Kita, Mona E. Mahani, Koji Zettsu, Ryoichi Imasu, Sachiko Hayashida, and Yasuko Kasai
Atmos. Meas. Tech., 11, 1653–1668, https://doi.org/10.5194/amt-11-1653-2018, https://doi.org/10.5194/amt-11-1653-2018, 2018
Short summary
Short summary
Air pollution is one of the world's greatest environmental health risks. Ozone adversely affects human health and agricultural production, and the tropospheric ozone has been increasing globally over the past few decades. We report an advanced method to derive the ozone amount in the lowermost troposphere using multi-spectral measurements (UV, thermal infrared and microwave). Combining the MW measurement with the UV and thermal infrared measurements certainly increased the sensitivity.
T. O. Sato, H. Sagawa, N. Yoshida, and Y. Kasai
Atmos. Meas. Tech., 7, 941–958, https://doi.org/10.5194/amt-7-941-2014, https://doi.org/10.5194/amt-7-941-2014, 2014
K. Kuribayashi, H. Sagawa, R. Lehmann, T. O. Sato, and Y. Kasai
Atmos. Chem. Phys., 14, 255–266, https://doi.org/10.5194/acp-14-255-2014, https://doi.org/10.5194/acp-14-255-2014, 2014
H. Sagawa, T. O. Sato, P. Baron, E. Dupuy, N. Livesey, J. Urban, T. von Clarmann, A. de Lange, G. Wetzel, B. J. Connor, A. Kagawa, D. Murtagh, and Y. Kasai
Atmos. Meas. Tech., 6, 3325–3347, https://doi.org/10.5194/amt-6-3325-2013, https://doi.org/10.5194/amt-6-3325-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
M. Khosravi, P. Baron, J. Urban, L. Froidevaux, A. I. Jonsson, Y. Kasai, K. Kuribayashi, C. Mitsuda, D. P. Murtagh, H. Sagawa, M. L. Santee, T. O. Sato, M. Shiotani, M. Suzuki, T. von Clarmann, K. A. Walker, and S. Wang
Atmos. Chem. Phys., 13, 7587–7606, https://doi.org/10.5194/acp-13-7587-2013, https://doi.org/10.5194/acp-13-7587-2013, 2013
Yajun Xu, Tomohiro O. Sato, Ayano Nakamura, Tamaki Fujinawa, Suyun Wang, and Yasuko Kasai
EGUsphere, https://doi.org/10.5194/egusphere-2024-194, https://doi.org/10.5194/egusphere-2024-194, 2024
Preprint withdrawn
Short summary
Short summary
Usually, the vertical column density of NO2 is obtained by converting the slant column density derived from the measured spectra using an air mass factor (AMF). This work proposes two deep neural network models for calculating the tropospheric AMF and altitude-dependent AMF. Experiments shown that the RMSPE and computation time are approximately 30 times smaller and two times shorter compared to the traditional method.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021, https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
Short summary
Aerosol property observations by satellites from geostationary Earth orbit (GEO) in particular have advantages of frequent sampling better than 1 h in addition to broader spatial coverage. This study provides data fusion products of aerosol optical properties from four different algorithms for two different GEO satellites: GOCI and AHI. The fused aerosol products adopted ensemble-mean and maximum-likelihood estimation methods. The data fusion provides improved results with better accuracy.
Holger Winkler, Takayoshi Yamada, Yasuko Kasai, Uwe Berger, and Justus Notholt
Atmos. Chem. Phys., 21, 7579–7596, https://doi.org/10.5194/acp-21-7579-2021, https://doi.org/10.5194/acp-21-7579-2021, 2021
Short summary
Short summary
Sprites are electrical discharges above thunderstorms. We performed model simulations of the chemical processes in sprites to compare them with measurements of chemical perturbations above sprite-producing thunderstorms.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Seidai Nara, Tomohiro O. Sato, Takayoshi Yamada, Tamaki Fujinawa, Kota Kuribayashi, Takeshi Manabe, Lucien Froidevaux, Nathaniel J. Livesey, Kaley A. Walker, Jian Xu, Franz Schreier, Yvan J. Orsolini, Varavut Limpasuvan, Nario Kuno, and Yasuko Kasai
Atmos. Meas. Tech., 13, 6837–6852, https://doi.org/10.5194/amt-13-6837-2020, https://doi.org/10.5194/amt-13-6837-2020, 2020
Short summary
Short summary
In the atmosphere, more than 80 % of chlorine compounds are anthropogenic. Hydrogen chloride (HCl), the main stratospheric chlorine reservoir, is useful to estimate the total budget of the atmospheric chlorine compounds. We report, for the first time, the HCl vertical distribution from the middle troposphere to the lower thermosphere using a high-sensitivity SMILES measurement; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, https://doi.org/10.5194/acp-20-12813-2020, 2020
Short summary
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Tamaki Fujinawa, Tomohiro O. Sato, Takayoshi Yamada, Seidai Nara, Yuki Uchiyama, Kodai Takahashi, Naohiro Yoshida, and Yasuko Kasai
Atmos. Meas. Tech., 13, 2119–2129, https://doi.org/10.5194/amt-13-2119-2020, https://doi.org/10.5194/amt-13-2119-2020, 2020
Short summary
Short summary
We performed an error analysis of SMILES observations for acetonitrile and a validation using the MLS observations by extracting the coincident points between SMILES and MLS data. The major error sources for the SMILES observations were quantitatively estimated. At upper pressure levels the difference between the two datasets increased because of an uncertainty in MLS observations. The results showed that SMILES has an advantage in measuring acetonitrile in the upper stratosphere and mesosphere.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018, https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
Short summary
We are planning a Mars mission. The mission will carry an instrument capable of measuring and mapping molecular oxygen and water in the Martian atmosphere, as well as the temperature, wind, and magnetic field. Water and oxygen are vital parts of the Martian atmospheric chemistry and must be better understood. Using computer simulation results, the paper gives a description of how the measurements will work, some problems we expect to encounter, and the sensitivity of the measurements.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Tomohiro O. Sato, Takao M. Sato, Hideo Sagawa, Katsuyuki Noguchi, Naoko Saitoh, Hitoshi Irie, Kazuyuki Kita, Mona E. Mahani, Koji Zettsu, Ryoichi Imasu, Sachiko Hayashida, and Yasuko Kasai
Atmos. Meas. Tech., 11, 1653–1668, https://doi.org/10.5194/amt-11-1653-2018, https://doi.org/10.5194/amt-11-1653-2018, 2018
Short summary
Short summary
Air pollution is one of the world's greatest environmental health risks. Ozone adversely affects human health and agricultural production, and the tropospheric ozone has been increasing globally over the past few decades. We report an advanced method to derive the ozone amount in the lowermost troposphere using multi-spectral measurements (UV, thermal infrared and microwave). Combining the MW measurement with the UV and thermal infrared measurements certainly increased the sensitivity.
Richard Larsson, Mathias Milz, Patrick Eriksson, Jana Mendrok, Yasuko Kasai, Stefan Alexander Buehler, Catherine Diéval, David Brain, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 6, 27–37, https://doi.org/10.5194/gi-6-27-2017, https://doi.org/10.5194/gi-6-27-2017, 2017
Short summary
Short summary
By computer simulations, we explore and quantify how to use radiation emitted by molecular oxygen in the Martian atmosphere to measure the magnetic field from the crust of the planet. This crustal magnetic field is important to understand the past evolution of Mars. Our method can measure the magnetic field at lower altitudes than has so far been done, which could give important information on the characteristics of the crustal sources if a mission with the required instrument is launched.
L. Millán, S. Wang, N. Livesey, D. Kinnison, H. Sagawa, and Y. Kasai
Atmos. Chem. Phys., 15, 2889–2902, https://doi.org/10.5194/acp-15-2889-2015, https://doi.org/10.5194/acp-15-2889-2015, 2015
A. Schanz, K. Hocke, N. Kämpfer, S. Chabrillat, A. Inness, M. Palm, J. Notholt, I. Boyd, A. Parrish, and Y. Kasai
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-32667-2014, https://doi.org/10.5194/acpd-14-32667-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes novel findings in the diurnal variation of stratospheric ozone by means of the MACC reanalysis, the ERA-Interim reanalysis and the WACCM model. The diurnal variation in ozone has dynamical and photochemical origins which lead to substantial amplitudes especially in the polar, stratospheric regions. The unprecedented, global view on diurnal ozone variation strengthens the implication to correct diurnally sampled satellite observations used for ozone trend estimates.
K. Sagi, D. Murtagh, J. Urban, H. Sagawa, and Y. Kasai
Atmos. Chem. Phys., 14, 12855–12869, https://doi.org/10.5194/acp-14-12855-2014, https://doi.org/10.5194/acp-14-12855-2014, 2014
P. Eriksson, B. Rydberg, H. Sagawa, M. S. Johnston, and Y. Kasai
Atmos. Chem. Phys., 14, 12613–12629, https://doi.org/10.5194/acp-14-12613-2014, https://doi.org/10.5194/acp-14-12613-2014, 2014
Short summary
Short summary
The sub-millimetre wavelength region has been identified as very useful for measurements of cloud ice mass. The only satellite sensors operating in this wavelength region are so far limb sounders, and results from two such instruments are presented and sample applications are demonstrated. The results have high intrinsic value, but serve also as a practical preparation for planned dedicated sub-millimetre cloud missions.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
T. O. Sato, H. Sagawa, N. Yoshida, and Y. Kasai
Atmos. Meas. Tech., 7, 941–958, https://doi.org/10.5194/amt-7-941-2014, https://doi.org/10.5194/amt-7-941-2014, 2014
K. Kuribayashi, H. Sagawa, R. Lehmann, T. O. Sato, and Y. Kasai
Atmos. Chem. Phys., 14, 255–266, https://doi.org/10.5194/acp-14-255-2014, https://doi.org/10.5194/acp-14-255-2014, 2014
H. Sagawa, T. O. Sato, P. Baron, E. Dupuy, N. Livesey, J. Urban, T. von Clarmann, A. de Lange, G. Wetzel, B. J. Connor, A. Kagawa, D. Murtagh, and Y. Kasai
Atmos. Meas. Tech., 6, 3325–3347, https://doi.org/10.5194/amt-6-3325-2013, https://doi.org/10.5194/amt-6-3325-2013, 2013
T. Sugita, Y. Kasai, Y. Terao, S. Hayashida, G. L. Manney, W. H. Daffer, H. Sagawa, M. Suzuki, M. Shiotani, K. A. Walker, C. D. Boone, and P. F. Bernath
Atmos. Meas. Tech., 6, 3099–3113, https://doi.org/10.5194/amt-6-3099-2013, https://doi.org/10.5194/amt-6-3099-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
M. Khosravi, P. Baron, J. Urban, L. Froidevaux, A. I. Jonsson, Y. Kasai, K. Kuribayashi, C. Mitsuda, D. P. Murtagh, H. Sagawa, M. L. Santee, T. O. Sato, M. Shiotani, M. Suzuki, T. von Clarmann, K. A. Walker, and S. Wang
Atmos. Chem. Phys., 13, 7587–7606, https://doi.org/10.5194/acp-13-7587-2013, https://doi.org/10.5194/acp-13-7587-2013, 2013
P. Baron, D. P. Murtagh, J. Urban, H. Sagawa, S. Ochiai, Y. Kasai, K. Kikuchi, F. Khosrawi, H. Körnich, S. Mizobuchi, K. Sagi, and M. Yasui
Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, https://doi.org/10.5194/acp-13-6049-2013, 2013
R. A. Stachnik, L. Millán, R. Jarnot, R. Monroe, C. McLinden, S. Kühl, J. Puķīte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J. P. Pommereau, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 3307–3319, https://doi.org/10.5194/acp-13-3307-2013, https://doi.org/10.5194/acp-13-3307-2013, 2013
Related subject area
Subject: Open geoscience | Keyword: Public communication of science
Strategies for improving the communication of satellite-derived InSAR data for geohazards through the analysis of Twitter and online data portals
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Cited articles
Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and
Itano, Y.: Analysis of monitoring data of ground-level ozone in Japan for
long-term trend during 1990–2010: Causes of temporal and spatial variation,
Atmos. Env., 102, 302–310, https://doi.org/10.1016/j.atmosenv.2014.12.001, 2015. a
Akimoto, H., Nagashima, T., Li, J., Fu, J. S., Ji, D., Tan, J., and Wang, Z.: Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference, Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019, 2019. a
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe,
C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E.,
Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey,
K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur,
R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.:
Description and evaluation of the Community Multiscale Air Quality (CMAQ)
modeling system version 5.1, Geosci. Model Dev., 10,
1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a, b, c
Byun, D. and Schere, K. L.: Review of the Governing Equations,
Computational Algorithms, and Other Components of the Models-3 Community
Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev.,
59, 51–77, https://doi.org/10.1115/1.2128636, 2006. a, b
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., and Vignati, E.: Fossil CO2 and GHG emissions of all world countries – 2019 Report, EUR 29849 EN,
Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-11100-9, JRC117610, https://doi.org/10.2760/687800, 2019. a
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model., J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. a
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. a
Feng, Z., Hu, E., Wang, X., Jiang, L., and Liu, X.: Ground-level
O3 pollution and its impacts on food crops in China: a review, Environ.
Pollut., 199, 42–48, https://doi.org/10.1016/j.envpol.2015.01.016, 2015. a
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient
thermodynamic equilibrium model for
K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O
aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T.,
Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases
and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated
framework for modeling biogenic emissions, Geosci. Model Dev.,
5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. a
Hu, J., Ying, Q., Wang, Y., and Zhang, H.: Characterizing multi-pollutant air
pollution in China: Comparison of three air quality indices, Environ.
Int., 84, 17–25, 2015. a
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a, b
Johnson, N. L.: Systems of Frequency Curves Generated by Methods of
Translation, Biometrika, 36, 149–176, https://doi.org/10.2307/2332539, 1949. a
Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker,
F. D., Lee, B. H., Thornton, J. A., McDuffie, E. E., Fibiger, D. L., Brown,
S. S., Montzka, D. D., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost,
P., Day, D. A., Jimenez, J. L., Dibb, J. E., Campos, T., Shah, V.,
Jaeglé, L., and Cohen, R. C.: NOx lifetime and NOy partitioning
during WINTER, J. Geophys. Res.-Atmos., 123, 9813–9827, 2018. a
Kerr, J. T. and Currie, D. J.: Effects of human activity on global
extinction risk, Conserv. Biol., 9, 1528–1538, 1995. a
Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z.,
Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y.,
Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and
Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the
international collaboration framework of the MICS-Asia and HTAP, Atmos.
Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. a, b
Liu, T., Li, T. T., Zhang, Y. H., Xu, Y. J., Lao, X. Q.,
Rutherford, S., Chu, C., Luo, Y., Zhu, Q., Xu, X. J., Xie, H. Y.,
Liu, Z. R., and Ma, W. J.: The short-term effect of ambient ozone on
mortality is modified by temperature in Guangzhou, China, Atmos. Environ., 76,
59–67, https://doi.org/10.1016/j.atmosenv.2012.07.011, 2013. a
McCarty, J. and Kaza, N.: Urban form and air quality in the United States,
Landscape Urban Plan., 139, 168–179,
https://doi.org/10.1016/j.landurbplan.2015.03.008, 2015. a
Miao, W., Huang, X., and Song, Y.: An economic assessment of the health
effects and crop yield losses caused by air pollution in mainland China, J.
Environ. Sci., 56, 102–113, https://doi.org/10.1016/j.jes.2016.08.024, 2017. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and
Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a
validated correlated-k model for the longwave, J. Geophys. Res., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Nagashima, T., Ohara, T., Sudo, K., and Akimoto, H.: The relative importance of various source regions on East Asian surface ozone, Atmos. Chem. Phys., 10, 11305–11322, https://doi.org/10.5194/acp-10-11305-2010, 2010. a
Nagashima, T., Sudo, K., Akimoto, H., Kurokawa, J., and Ohara, T.:
Long-term change in the source contribution to surface ozone over Japan,
Atmos. Chem. Phys., 17, 8231–8246, https://doi.org/10.5194/acp-17-8231-2017, 2017. a
National Institute for Environmental Studies: Kankyosuchi database, available at: https://www.nies.go.jp/igreen, last access: 20 August 2020 (in Japanese).
NCEP FNL: National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S.Department of Commerce (2000), Updated Daily. NCEP FNL
Operational Model Global Tropospheric Analyses, Continuing from July 1999,
Research Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory, https://doi.org/10.5065/D6M043C6 (last access: 20 August 2020),
2000. a
NSTAC: Portal Site of Official Statistics of Japan website, 2015 Population
Census, available at: https://www.e-stat.go.jp/ (last access: 15 August
2019), 2016. a
OECD: The Economic Consequences of Outdoor Air Pollution, Policy
Highlights, OECD Publishing, Paris, 2016. a
Official Statistics of Japan: e-Stat, available at: https://www.e-stat.75go.jp/, last access: 20 August 2020.
Park, M. E., Song, C. H., Park, R. S., Lee, J., Kim, J., Lee, S., Woo, J.-H., Carmichael, G. R., Eck, T. F., Holben, B. N., Lee, S.-S., Song, C. K., and Hong, Y. D.: New approach to monitor transboundary particulate pollution over Northeast Asia, Atmos. Chem. Phys., 14, 659–674, https://doi.org/10.5194/acp-14-659-2014, 2014. a, b
Pye, H. O. and Pouliot, G. A.: Modeling the role of alkanes, polycyclic
aromatic hydrocarbons, and their oligomers in secondary organic aerosol
formation, Environ. Sci. Tech., 46, 6041–6047, 2012. a
Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y. H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., and Edney, E. O.: Epoxide pathways
improve model predictions of isoprene markers and reveal key role of acidity
in aerosol formation, Environ. Sci. Tech., 47, 11056–11064, 2013. a
Roselle, S. J., Schere, K. L., Pleim, J. E., and Hanna, A. F.:
Photolysis rates for CMAQ, chap. 14, Science Algorithms of the EPA Models-3 Community
Multiscale Air Quality (CMAQ) Modeling System, 14-1–14-7, 1999. a
Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the
impact of heterogeneous nitryl chloride production on air quality across the
United States, Atmos. Chem. Phys., 12, 6455–6473,
https://doi.org/10.5194/acp-12-6455-2012, 2012. a, b
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A
discription of the Advanced Research WRF Version 3, NCAR Technical Note
NCAR/TN-475+STR, 1–113, 2008. a
Stieb, D. M., Burnett, R. T., Smith-Doiron, M., Brion, O., Shin,
H. H., and Economou, V.: A New Multipollutant, No-Threshold Air Quality
Health Index Based on Short-Term Associations Observed in Daily Time-Series
Analyses, J. Air Waste Manage. Assoc., 58, 435–450,
https://doi.org/10.3155/1047-3289.58.3.435, 2008. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.:
Explicit Forecasts of Winter Precipitation Using an Improved Bulk
Microphysics Scheme, Part II: Implementation of a New Snow Parameterization,
Mon. Weather Rev., 136, 5095, https://doi.org/10.1175/2008MWR2387.1, 2008. a
UNEP: Global Drinking Water Quality Index Development and Sensitivity
Analysis Report, UNEP GEMS/Water Programme, Burlington, Ontario, 1–58, 2007. a
VehkamäKi, H., Kulmala, M., Napari, I., Lehtinen, K. E. J.,
Timmreck, C., Noppel, M., and Laaksonen, A.: An improved
parameterization for sulfuric acid-water nucleation rates for tropospheric
and stratospheric conditions, J. Geophys. Res.-Atmos., 107, 4622,
https://doi.org/10.1029/2002JD002184, 2002. a
Wakamatsu, S., Morikawa, T., and Ito, A.: Air pollution trends in Japan between
1970 and 2012 and impact of urban air pollution countermeasures, Asian
J. Atmos. Environ., 7, 177–190, 2013. a
Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen,
D. T., Carter, W. P. L., and Yarwood, G.: A new condensed toluene
mechanism for Carbon Bond: CB05-TU, Atmos. Environ., 44, 5346–5355,
https://doi.org/10.1016/j.atmosenv.2009.12.029, 2010. a, b
Wong, T. W., Tama, W. W. S., Yu, I. T. S., Lau, A. K. H., Pang,
S. W., and Wong, A. H.: Developing a risk-based air quality health index,
Atmos. Environ., 76, 52–58, https://doi.org/10.1016/j.atmosenv.2012.06.071, 2013. a
Short summary
Air is as valuable a resource as water. We defined a novel index, the Clean aIr Index (CII), to evaluate air cleanliness in terms of a global standard. Japan was chosen as a study area. The air cleanliness of Tokyo was 1.5 and 2.3 times higher than that of Seoul and Beijing, respectively. Extremely clean air occurred to the west of the Pacific coast and in the southern remote islands of Tokyo during summer. CII can be valuable, e.g., for encouraging sightseeing in and migration to fresher air.
Air is as valuable a resource as water. We defined a novel index, the Clean aIr Index (CII), to...
Altmetrics
Final-revised paper
Preprint