Articles | Volume 8, issue 4
https://doi.org/10.5194/gc-8-319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gc-8-319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the effectiveness of quantitative descriptions of Earth Science phenomena during outreach activities
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Alessandro Tadini
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Laura Pieretti
Istituto Istruzione Superiore Galilei-Pacinotti, Pisa 56125, Italy
Damiano Biagini
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Spina Cianetti
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Simone Colucci
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Matteo Cerminara
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Claudia D'Oriano
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Chiara Montagna
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Michele D'Ambrosio
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Raffaello Pegna
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Giuseppe Re
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Francesco Sanseverino
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Carlo Giunchi
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Carlo Meletti
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Tomaso Esposti Ongaro
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa 56125, Italy
Related authors
No articles found.
Giovanni Diaferia, Irene Molinari, Marco Olivieri, Fabio Di Felice, Andrea Contu, Domenico D'Urso, Luca Naticchioni, Davide Rozza, Jan Harms, Alessandro Cardini, Rosario De Rosa, Matteo Di Giovanni, Valentina Mangano, Fulvio Ricci, Lucia Trozzo, Carlo Murineddu, and Carlo Giunchi
Solid Earth, 16, 441–456, https://doi.org/10.5194/se-16-441-2025, https://doi.org/10.5194/se-16-441-2025, 2025
Short summary
Short summary
Seismic noise from wind farms can disturb nearby sensitive instruments. We examine the noise of Italy's largest wind farm, located near the proposed site for the third-generation gravitational wave detector. We find that seismic noise is considerable and can be detected up to 13 km distance. Seismic sensors placed at ∼ 250 m depth confirm an excellent level of noise suppression; however, small disturbances in the recorded spectra are detectable when the wind park operates at full capacity.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Francesco Visini, Carlo Meletti, Andrea Rovida, Vera D'Amico, Bruno Pace, and Silvia Pondrelli
Nat. Hazards Earth Syst. Sci., 22, 2807–2827, https://doi.org/10.5194/nhess-22-2807-2022, https://doi.org/10.5194/nhess-22-2807-2022, 2022
Short summary
Short summary
As new data are collected, seismic hazard models can be updated and improved. In the framework of a project aimed to update the Italian seismic hazard model, we proposed a model based on the definition and parametrization of area sources. Using geological data, seismicity and other geophysical constraints, we delineated three-dimensional boundaries and activity rates of a seismotectonic zoning and explored the epistemic uncertainty by means of a logic-tree approach.
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022, https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
Short summary
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-models and solution techniques as well as optimizations. MagmaFOAM is a newly developed library that allows for maximum flexibility for solving multiphase volcanic flows and promotes collaborative work for in-house and community model development, testing, and comparison.
Alberto Michelini, Spina Cianetti, Sonja Gaviano, Carlo Giunchi, Dario Jozinović, and Valentino Lauciani
Earth Syst. Sci. Data, 13, 5509–5544, https://doi.org/10.5194/essd-13-5509-2021, https://doi.org/10.5194/essd-13-5509-2021, 2021
Short summary
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Silvia Pondrelli, Francesco Visini, Andrea Rovida, Vera D'Amico, Bruno Pace, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020, https://doi.org/10.5194/nhess-20-3577-2020, 2020
Short summary
Short summary
We used 100 years of seismicity in Italy to predict the hypothetical tectonic style of future earthquakes, with the purpose of using this information in a new seismic hazard model. To squeeze all possible information out of the available data, we created a chain of criteria to be applied in the input and output selection processes. The result is a list of cases from very clear ones, e.g., extensional tectonics in the central Apennines, to completely random tectonics for future seismic events.
Cited articles
Amato, A., Cugliari, L., Samperi, V., Funiciello, F., and De Filippis, L.: Tsunami at school: an experimental strategy to increase students' risk perception, J. Sci. Res., 12, 135–147, https://doi.org/10.4401/ag-9063, 2024.
Bradburn, N. M., Sudman, S., and Wansink, B.: Asking questions: the definitive guide to questionnaire design – for market research, political polls, and social and health questionnaires, John Wiley & Sons, ISBN 978-0-7879-7088-8, 2004.
Brogi, F., Colucci, S., Matrone, J., Montagna, C. P., De' Michieli Vitturi, M., and Papale, P.: MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems, Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022, 2022.
Budak, C., Nyhan, B., Rothschild, D. M., Thorson, E., and Watts, D. J.: Misunderstanding the harms of online misinformation, Nature, 630, 45–53, https://doi.org/10.1038/s41586-024-07417-w, 2024.
Cianetti, S., Giunchi, C., Capello, M., and Biagini, D.: Studiare i terremoti con un sismografo didattico, Miscellanea INGV, 58, 73–97, https://doi.org/10.13127/misc/58/5, 2021.
Clift, R., Grace, J. R., and Weber, M. E.: Bubbles, drops, and particles, ACADEMIC PRESS, New York, San Francisco, London, https://doi.org/10.1017/S0022112079221290, 1978.
Colucci, S., Brogi, F., Sottili, G., Montagna, C. P., and Papale, P.: Short-term magma–carbonate interaction: a modelling perspective, Earth Planet. Sc. Lett., 628, 118592, https://doi.org/10.1016/j.epsl.2024.118592, 2024.
D'Addezio, G.: 25 Years of INGV's Education and Outreach: bridging science and society, J. Geoethics Soc. Geosci., 2, 1–18, https://doi.org/10.13127/jgsg-66, 2025.
D'Addezio, G., Rubbia, G., Marsili, A., and The Laboratorio Didattica e Divulgazione Scientifica Team: The experience of ScienzAperta, a week of scientific information and dissemination, edited by: Lollino, G., Arattano, M., Giardino, M., Oliveira, R., and Peppoloni, S., Engineering Geology for Society and Territory, Vol. 7. Springer, Cham, https://doi.org/10.1007/978-3-319-09303-1_20, 2014.
Darnila, E., Ula, M., Tarigan, K., Limbong, T., and Sinambela, M.: Waveform analysis of broadband seismic station using machine learning Python based on Morlet wavelet, IOP Conf. Ser. Mater. Sci. Eng., 420, 012048, https://doi.org/10.1088/1757-899X/420/1/012048, 2018.
De Jong, T.: Cognitive load theory, educational research, and instructional design: some food for thought, Instr. Sci., 38, 105–134, https://doi.org/10.1007/s11251-009-9110-0, 2010.
De Jong, T. and van Joolingen, W. R.: Scientific discovery learning with computer simulations of conceptual domains, Rev. Educ. Res., 68, 179–201, https://doi.org/10.3102/00346543068002179, 1998.
DeVellis, R. F. and Thorpe, C. T.: Scale development: theory and applications, Sage Publications, ISBN 9781544379340, 2021.
Gregg, C. E., Houghton, B. F., Johnston, D. M., Paton, D., and Swanson, D. A.: The perception of volcanic risk in Kona communities from Mauna Loa and Hualālai volcanoes, Hawai'i, J. Volcanol. Geotherm. Res., 130, 179–196, https://doi.org/10.1016/S0377-0273(03)00288-9, 2004.
Harpp, K. S., Koleszar, A. M., and Geist, D. J.: Volcanoes in the classroom: a simulation of an eruption column, J. Geosci. Educ., 53, 173–175, https://doi.org/10.5408/1089-9995-53.2.173, 2005.
Illingworth, S.: A spectrum of geoscience communication: from dissemination to participation, Geosci. Commun., 6, 131–139, https://doi.org/10.5194/gc-6-131-2023, 2023.
Illingworth, S., Stewart, I., Tennant, J., and von Elverfeldt, K.: Editorial: Geoscience Communication – Building bridges, not walls, Geosci. Commun., 1, 1–7, https://doi.org/10.5194/gc-1-1-2018, 2018.
Jolley, A., Dohaney, J., and Kennedy, B. M.: Teaching about volcanoes: practices, perceptions, and implications for professional development, Volcanica, 5, 11–32, https://doi.org/10.30909/vol.05.01.1132, 2022.
Krüger, J. T., Höffler, T. N., Wahl, M. Knickmeier, K., and Parchmann, I.: Two comparative studies of computer simulations and experiments as learning tools in school and out-of-school education, Instr. Sci., 50, 169–197, https://doi.org/10.1007/s11251-021-09566-1, 2022.
Larson, H. J. and Bersoff, D. M.: Science's big problem is a loss of influence, not a loss of trust, Nature, 640, 314–317, https://doi.org/10.1038/d41586-025-01068-1, 2025.
Lin, H.-S., Hong, Z.-R., and Chen, Y.-C.: Exploring the development of college students' situational interest in learning science, Int. J. Sci. Educ., 35, 2152–2173, https://doi.org/10.1080/09500693.2013.818261, 2013.
Ma, Y. Z. and Zhang, X.: Quantitative geosciences: data analytics, geostatistics, reservoir characterization and modeling, Springer International Publishing, https://doi.org/10.1007/978-3-030-17860-4, 2019.
Merle, O.: The scaling of experiments on volcanic systems, Frontiers in Earth Science, 3, 26, https://doi.org/10.3389/feart.2015.00026, 2015.
Moutinho, S., Moura, R., and Vasconcelos, C.: Simulating an earthquake and its effects on soils and buildings: a practical activity to disseminate geosciences and its evaluation, in: Geoscience Education, edited by: Vasconcelos, C., Springer, Cham, https://doi.org/10.1007/978-3-319-43319-6_3, 2016.
O'Connor, R. A., Roberson, T., de Castella, C., and Leviston, Z.: The value of public science events: insights from three years of communicating climate change research, J. Sci. Commun., 22, https://doi.org/10.22323/2.22050805, 2023.
Pignone, M., Amato, A., Nostro, C., Casarotti, E., Meletti, C., Quintiliani, M., and Lauciani, V.: Public earthquake communication in Italy through a multi-source social media platform: the INGVterremoti experience (2010–2022), Front. Earth Sci., 10, 1003867, https://doi.org/10.3389/feart.2022.1003867, 2022.
Pollyea, R. M., Mohammadi, N., Taylor, J. E., and Chapman, M. C.: Geospatial analysis of Oklahoma (USA) earthquakes (2011–2016): quantifying the limits of regional-scale earthquake mitigation measures, Geology, 46, 215–218, 2018.
Presser, S. and Blair, J.: Survey pretesting: do different methods produce different results?, Sociol. Methodol., 24, 73–104, https://doi.org/10.2307/270979, 1994.
Ripepe, M. and Lacanna, G.: Volcano generated tsunami recorded in the near source, Nat. Commun., 15, 1802, https://doi.org/10.1038/s41467-024-45937-1, 2024.
Riposati, D., D'Addezio, G., Di Laura, F., Misiti, V., and Battelli, P.: Graphic design and scientific research – the National Institute of Geophysics and Volcanology (INGV) experience, Geosci. Commun., 3, 407–425, https://doi.org/10.5194/gc-3-407-2020, 2020.
Rust, A. C., Cashman, K. V., and Wright, H. M.: Fudge Factors in Lessons on Crystallization, Rheology and Morphology of Basalt Lava Flows. Journal of Geoscience Education, 56, 73–80, https://doi.org/10.5408/1089-9995-56.1.73, 2008.
Rutten, N., van Joolingen, W. R., and van der Veen, J. T.: The learning effects of computer simulations in science education, Computers Educ., 58, 136–153, https://doi.org/10.1016/j.compedu.2011.07.017, 2012.
Schellart, W. P.: Rheology and density of glucose syrup and honey: determining their suitability for usage in analogue and fluid dynamic models of geological processes, J. Struct. Geol., 33, 1079–1088, https://doi.org/10.1016/j.jsg.2011.03.013, 2011.
She, M., Weiß, T., Song, Y., Urban, P., Greinert, J., and Köser, K.: Marine bubble flow quantification using wide-baseline stereo photogrammetry, ISPRS J. Photogramm. Remote Sens., 190, 322–341, https://doi.org/10.1016/j.isprsjprs.2022.06.014, 2022.
Smetana, L. K. and Bell, R. L.: Computer simulations to support science instruction and learning: a critical review of the literature, Int. J. Sci. Educ., 34, 1337–1370, https://doi.org/10.1080/09500693.2011.605182, 2012.
Tourangeau, R., Rips, L. J., and Rasinski, K.: The psychology of survey response, Cambridge University Press, https://doi.org/10.1017/CBO9780511819322, 2000.
Wadsworth, F. B., Unwin, H. E., Vasseur, J., Kennedy, B. M., Holzmueller, J., Scheu, B., Witcher, T., Adolf, J., Cáceres, F., Casas, A. S., Cigala, V., Clement, A., Colombier, M., Cronin, S., Cronin, M., Dingwell, D. B., Guimarães, L. F., Höltgen, L., Kueppers, U., Seropian, G., Stern, S., Teissier, A., Vossen, C., and Weichselgartner, N.: Trashcano: developing quantitative teaching tools to understand ballistics accelerated by explosive volcanic eruptions, Volcanica, 1, 107–126, https://doi.org/10.30909/vol.01.02.107126, 2018.
Wadsworth, F. B., Llewellin, E. W., Rennie, C., and Watkinson, C.: In Vulcan's forge, Nature Geoscience, 12, 2–3, https://doi.org/10.1038/s41561-018-0283-5, 2019.
Winn, W.: Research into practice: current trends in educational technology research: the study of learning environments, Educ. Psychol. Rev., 14, 331–351, https://doi.org/10.1023/A:1016068530070, 2002.
Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., and Lee, Y.-L.: Learning oceanography from a computer simulation compared with direct experience at sea, J. Res. Sci. Teach., 43, 25–42, https://doi.org/10.1002/tea.20097, 2006.
Zhao, P. and Chen, Y.: Digital geosciences and quantitative mineral exploration., J. Earth Sci., 32, 269–275, https://doi.org/10.1007/s12583-021-1440-0, 2021.
Short summary
This study describes two hands-on outreach events: an interactive lesson for high-school students during European Researchers’ Night and a tsunami experiment at Lucca Comics & Games. Surveys showed both groups enjoyed the activities, boosted their grasp of geoscience ideas and grew more positive about science. The work emphasizes the effectiveness of quantitative experiment demonstrations and the need to adapt them to the audience, time available and clear educator coordination.
This study describes two hands-on outreach events: an interactive lesson for high-school...
Altmetrics
Final-revised paper
Preprint