Articles | Volume 3, issue 2
https://doi.org/10.5194/gc-3-191-2020
https://doi.org/10.5194/gc-3-191-2020
Review article
 | Highlight paper
 | 
13 Aug 2020
Review article | Highlight paper |  | 13 Aug 2020

Open weather and climate science in the digital era

Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton

Related authors

The eWaterCycle platform for open and FAIR hydrological collaboration
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022,https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary

Cited articles

AARNet: Annual Report/2018 Data Connector for the Future, Tech. Rep., Australia's Academic and Research Network, Chatswood, Australia, 2018. a
Adadi, A. and Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access, 6, 52138–52160, https://doi.org/10.1109/ACCESS.2018.2870052, 2018. a
Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., Martinez-Ortiz, C., Turkyilmaz-van der Velden, Y., and Van Werkhoven, B.: Raising the Profile of Research Software: Recommendations for Funding Agencies and Research Institutions, Tech. Rep., Netherlands eScience Center, Amsterdam, the Netherlands, Zenodo, https://doi.org/10.5281/zenodo.3378572, 2019. a
Baker, M.: Is there a reproducibility crisis? A Nature survey lifts the lid on how researchers view the crisis rocking science and what they think will help, Nature, 533, 353–366, 2016. a
Bari, D.: Visibility Prediction based on kilometric NWP Model Outputs using Machine-learning Regression, in: IEEE 14th International Conference on e-Science, p. 278, https://doi.org/10.1109/eScience.2018.00048, 2018. a, b, c
Short summary
At the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Open science offers manifold opportunities but goes beyond sharing code and data. Besides domain-specific technical challenges, we observed that the main challenges are non-technical and impact the system of science as a whole.
Altmetrics
Final-revised paper
Preprint