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Abstract. The communication of uncertainty is not only a challenge when soil information has been produced but also in

the planning stage. When planning a survey of soil properties it is necessary to make decisions about the sampling density.

Sampling density determines both the quality of predictions and the cost of fieldwork. In this study, we considered four ways

in which the relationship between sample density and the uncertainty of predictions can be related, based on prior information

about the variability of the target quantity. These were offset correlation, prediction intervals, conditional probabilities of the5

interpretation errors and implicit loss functions. Offset correlation is a measure of the consistency of kriging predictions made

from sample grids with the same spacing but different origins. Prediction intervals and conditional probabilities are based on

the prediction distribution of the variable of interest. All four of these methods were investigated using information on soil

pH and Se concentration in grain in Malawi. They were presented to a group of stakeholders, who were asked to use them

in turn to select a sampling density. Their responses were evaluated and they were then asked to rank the methods based on10

their effectiveness, in their experience, and in terms of finding a level of uncertainty that they were able to tolerate when

deciding about a sampling grid spacing. Our results show that the approach that stakeholders favoured was offset correlation,

and some approaches were not well understood (conditional probability and implicit loss function). During feedback sessions,

the stakeholders highlighted that they were more familiar with the concept of correlation, with a closed interval of [0,1] and

this explains the more consistent responses under this method. The offset correlation will likely be more useful to stakeholders,15

with little or no statistical background, who are unable to express their requirements of information quality based on other

measures of uncertainty.

1 Introduction

Micronutrient deficiencies (MND) are a widespread health problem in sub-Saharan Africa (Hurst et al., 2013; Joy et al., 2014;

Phiri et al., 2019). In the GeoNutrition project, it has been shown that concentration of micronutrients in staple crops and in20

soils vary spatially and so interventions to address the deficiencies should be based on spatial information (Gashu et al., 2021;
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Botoman et al., 2022). In our previous studies (Chagumaira et al., 2021, 2022) we have shown that geostatistical predictions

can help stakeholders to make decisions for interventions to address MND, by accounting for uncertainty in the supporting

information which has been produced by statistical prediction from data and covariates. Spatial information is obtained from

surveys, and in most cases, budgets for surveys are limited and the stakeholders involved may have different set of questions25

to address and common ground is often difficult to establish. Often surveys efforts are constrained by budgets and we need

a trade-off between sample effort and reducing uncertainty. This requires that stakeholders, who must decide on sampling

budgets, can understand the relationship between effort, hence cost, and uncertainty.

When planning a survey of soil properties it is necessary to make decisions about the sampling density (e.g. de Gruijter et al.,

2006; Webster and Lark, 2013). Sampling density determines both the quality of predictions and the cost of field work. It is30

possible to draw some conclusions about spatial variation to support decisions on subsequent sampling from an approximate

variogram of a region (Lark et al., 2017). In geostatistical prediction, the variogram function models the spatial dependence

of the variable of interest, and the uncertainty in the predicted values in quantified by the kriging variance (i.e., the mean

squared error of the prediction). Therefore, if we have a reasonable estimate of variance parameters (i.e. variogram for ordinary

kriging) we can compute kriging variances for different grid spacings and, in principle, select an acceptable one (McBratney35

et al., 1981). In cases where we do not know the variogram (as we have yet to sample), a variogram from comparable regions

can be used instead to provide estimates of variance parameters (Alemu et al., 2022). Alternatively, an approximate variogram

from a reconnaissance study, accounting for uncertainty e.g., by a Bayesian approach, can be used to provide reasonable

estimates of variance parameters (Lark et al., 2017). An estimate of variance parameters can be obtained through an average

variogram or some other generalised model extracted from published studies (Paterson et al., 2018), or a variogram elicited40

from experts (Truong et al., 2013).

Kriging variances are a direct measure of uncertainty resulting from the prediction model. The kriging variance, at some

location, depends only on the variogram and the spatial distribution of observations (Webster and Oliver, 2007; Webster and

Lark, 2013). As the sampling density increases around a location, then the kriging variance diminishes. Because field and

analytical costs increase in parallel with sampling density, the kriging variance, as a measure of the resulting uncertainty, could45

be used to find an appropriate sample density such that the information user is satisfied with the trade off between cost and the

quality of information. However, kriging variance is not an accessible measure of uncertainty for many end users (Chagumaira

et al., 2021), and so it is likely that other methods of communicating the implications of sampling density on uncertainty would

be better.

Kriging is unbiased, and on the assumption of normality of the kriging errors, prediction intervals can be computed from50

kriging variances. Prediction intervals reflect the spatial variability of the variable and density of the samples (Webster and

Oliver, 2007). However, we know that prediction intervals are not preferred by end-users as a method of communicating uncer-

tainty when making decisions, they find it easier to interpret measures of uncertainty tied to a particular decisions (Chagumaira

et al., 2021). For example, the probability that the value of a soil property at some location does not exceed a threshold, below

which some intervention is needed. However, the kriging variance and prediction interval give measures of uncertainty but55

do not contextualise them with respect to the decision being made. If the purpose of the survey is to support decisions about
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a certain intervention then it may be useful for the end-user to understand the implications of sampling in terms of the risk

that the resulting information leads to incorrect decisions in particular situations. This can be considered as a general, decision

related uncertainty measure.

We may consider some sampling design (e.g. square grid) and a notional unsampled location, x0, at which information is60

needed to support a decision. For a conservative measure of uncertainty, x0, may be at a general location where uncertainty

is largest e.g, at the centre of a square grid cell. We may then compute, over a specified distribution of the target variable,

the probability that the predicted value of the property will indicate that no intervention is required at x0 conditional on the

true value, Z(x0), indicating that actually an intervention is needed. That is to say, the probability that the spatial information

will fail to indicate the correct decision at sites where a management or policy intervention is required. This probability will65

depend on the specific statistical model for the variable but also on sampling density. The conditional probabilities can then

be used to make a decision about soil sampling, by selecting an appropriate grid spacing which limits the risk to acceptable

level. Conditional probabilities have not been used in this way before, but there might be a way to tie uncertainty to a specific

decision in a way which will help the stakeholder to understand its significance.

A further way to develop the decision-focussed approach to sample planning is to consider the costs of sampling and the costs70

resulting from uncertainty. This requires the data user’s loss function. A loss function expresses the costs incurred resulting

from using erroneous information to make a decision for an intervention (Goovaerts, 1997). The loss function determines the

expected loss when the prediction is used to make a decision. We can then compute the expected loss for a decision as a

function of the precision of supporting information which in turn depends on the sampling density, and compare this with the

cost of obtaining sample data with that density. It may not be possible to define a loss function prior to making decisions on75

soil sampling strategy because the cost of the errors are difficult to frame and quantify. However, an implicit loss function,

conditional on a logistical model (i.e. a function of sampling effort and statistical information about the estimates of the cost

of errors) can be modelled as the loss function that makes a particular decision on sampling effort rational (Lark and Knights,

2015). The logistical model can be obtained from data from a previous survey or a from a comparable region. Lark and Knights

(2015) suggested that reflection on the implicit loss function for different sample schemes, or competing projects, may help80

decision-makers to arrive at loss functions which might be regarded as plausible.

Decisions on soil sampling can be based on more general measures of uncertainty, that relate to sampling intensity, such as

the offset correlation (Lark and Lapworth, 2013). The offset correlation is a measure of the robustness of the resulting map to

arbitrary variation in the location of the origin of a fixed regular sampling grid. For example, the offset correlation increases

as the uncertainty in the map, attributable to sample density, decreases. It is not directly related to the decision process but85

dependent on the variogram and the proposed sampling spacing. The offset correlation might be a more intuitive uncertainty

measure than prediction intervals and kriging variances. This is because people can more easily grasp and evaluate bounded

measures such as the correlation (Hsee, 1998).

In this study we aimed to find out whether groups of stakeholders were able to make decisions on soil and crop sampling

strategies, in particular sampling density using soil pH and selenium concentration in grain (Segrain), with the methods de-90
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scribed above. We aimed to address the following questions: (i) can stakeholders use the different approaches consistently? (ii)

do the stakeholders have a preference? and (iii) does their use/preference depend on their background and experience?

In the next section of this paper, we describe in detail the test approaches.

2 Theory

2.1 Prediction interval95

Some unknown quantity at a location (e.g. soil pH or Segrain) is characterised by a prediction distribution conditional on the

data and statistical model. The kriging variance at the unsampled location, x0, is defined as

σ2
K = E[{Z(x0)− Z̃(x0)}2], (1)

where Z̃(x0) is a prediction of the random variable Z(x0). The kriging prediction is a weighted average of the data

Z̃(x0) =
N∑

i=1

λz(x0), (2)100

where z(x0) is the data and λ are the kriging weights (Webster and Oliver, 2007). The kriging variance, σ2
K is defined as:

σ2
K = E[{Z(x0)− Z̃(x0)}2]. (3)

Cross-validation predictions of the statistical model need to be examined by exploratory analysis of the kriging error, ε(x0) =

{z(x0)−Z̃(xo)} to check if the assumption of the normality holds. The kriging predictor is unbiased and the mean of the errors

is zero, and their standard deviation is equal to the kriging standard deviation, σK, from kriging. Based on this, a 95% prediction105

interval can be computed as:

[
Z̃(x0)− 1.96σK(x0), Z̃(x0) + 1.96σK(x0)

]
. (4)

The prediction distribution may also be obtained on a block support–for example if predictions are required at the scale of a

farm mean or a mean for an administrative region. The same approach holds to the derivation of a prediction interval.

2.2 Conditional probability110

We can calculate the joint probability that a location requires an intervention, and that the kriged estimate does not indicate

this. If x0 is the location of interest, Z̃(xo) is the prediction and z(x0) the value of the variable at x0, then Z̃(xo)− z(x0)

= ε(x0), the error of the kriging predictions. The covariance of z(x0) and ε(x0) is:
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Cov[z(x0),ε(x0)] = Var[Z(x0)]−λTc, (5)

where λ denotes the vector of kriging weights for observations used to make the prediction, and c denotes the vector of115

covariances between each of these observations and Z(x0). We can therefore, specify the joint distribution of {z(x0),ε(x0)},

assuming a normal random variable and prediction errors and conditional on the variance parameters of a geostatistical model.

We also specify some x0 which will give a conservative output–e.g. for a square grid we could specify x0 at the centre of a

grid cell where kriging variance is largest. From this it is possible to compute the conditional probability that Z̃(x0)≥ zt given

that z(x0) < zt, i.e. the probability, given that an intervention is required at x0 that, due to error in prediction, the mapped120

variable does not show this. A detailed description of how the desired conditional probability can be obtained from the joint

probabilities is presented in the Supplement.

2.3 Implicit loss function

The loss function is a function of the error of Z̃, the kriging estimate of Z, as an estimate of the true unknown value, z,

L(Z̃ − z). The loss function is explained in greater detail by Journel (1984), Goovaerts (1997) and Lark and Knights (2015).125

Journel (1984) defined a general linear loss function as:

L(Z̃ − z) = α1|Z̃ − z| if Z̃ <z

= α2|Z̃ − z| if Z̃ ≥ z. (6)

The parameters α1 and α2 have positive real values. The coefficient α2 is the loss per unit error of underestimation and α1 is

the loss per unit of error of overestimation. The slopes, α1 and α2 define the asymmetry of the loss function. The loss function130

can be symmetrical, i.e. penalizing overestimation and underestimation equally; or can be asymmetrical because over-and-

underestimation have different consequences. The asymmetry of the loss function is the ratio of the loss per unit value by

which a quantity is underestimated to the loss per unit value of an overestimation (Lark and Knights, 2015). The asymmetry,

a, is obtained by

a =
α2

α1
, (7)135

i.e., is independent of the absolute value of z. If the loss function depends only on the estimation error, then z can be set to

zero, without loss of generality and the expected loss can be computed as a function of the error variance, and so of the sample

size (Lark and Knights, 2015). Increasing sample size reduces the minimum expected loss in so far as it reduced the error

variance. Therefore, the cost of obtaining n samples can be measured at which the marginal cost of additional sample point

is equal to the reduction in expected loss that single sample achieves (Goovaerts, 1997). However, it maybe difficult to define140

a loss function prior to making decisions about sampling. The losses may not be easy to quantify, e.g. social costs of failing

to intervene, costs of unnecessary interventions, loss of confidence in the decision-making organisation. Stakeholders can be

helped to reflect on possible loss functions through the implicit loss function. It is a loss function that makes a specified sample
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size, n, a rational choice, given the marginal costs. That is to say, it is the loss function implied by a choice of n̄, assuming this

is rational. The implicit loss function is conditional on a logistic model, that expresses the marginal costs of sampling exercise145

and the conditional distribution of z as a function of effort (Lark and Knights, 2015) and is obtained by finding ᾱ1 (given

asymmetry), such that

L̆(n̄− 1|ᾱ1, ᾱ2,ϕ)−L̆(n̄|ᾱ1, ᾱ2,ϕ) = C(n̄)−C(n̄− 1), (8)

where n̄ is the specified number of sample, C(n) is the function that returns the cost of n samples and ϕ is a vector of variogram

parameters, so kriging variance is a contributor. The asymmetry can be set at different values, or inferred from other elicited150

opinions of the stakeholder group (Lark and Knights, 2015). The expected loss can be minimised at a location given some

prediction distribution of Z̃ for the variable of interest by specifying the value of variable corresponding to a given probability

(P0), i.e.,

Z̃ = F−1(P0). (9)

Where, F−1 denote the quantile of the prediction distribution for a probability P0 obtained from155

P0 =
α2

α1 + α2
, (10)

(Journel, 1984). Lark and Knights (2015) suggested that a stakeholder group might consider an implicit loss function for

different n̄ as starting points in the elicitation of a sample size, or compare implicit loss function for different projects given

different partitions of a total budget between them. No attempt has been made to elicit opinions from stakeholders on implicit

loss function, so we tried it in this study.160

2.4 Offset correlation

The expected correlation between the kriging predictions, Z̃1(x0), made from a square grid, of interval ζ, and predictions,

Z̃2(x0), made from a second grid, a translation of the first grid by ζ/2 in both directions is known as the offset correlation. The

correlation of the two kriging predictions can be computed by:

ρZ̃1,Z̃2
=

CZ̃1,Z̃2
(x0)√

σ2
KZ̃1

σ2
KZ̃2

, (11)165

where CZ̃1,Z̃2
(x0) is the covariance Z̃1(x0) and Z̃2(x0). σ2

KZ̃1
and σ2

KZ̃2
are the kriging variances of the predictions from the

first and second grid, respectively.

The offset correlation depends on x0, and is smallest at the location furthest from points on either grid. This minimum offset

correlation is used to evaluate predictions from a grid spacing ζ. Offset correlation is bounded on the interval [0,1], which

makes it intuitively easy to interpret as an uncertainty measure. As the uncertainty in the map, attributable to sample density,170

decreases, the offset correlation increases. The denser the grid the more consistent the maps and the offset correlation will be

1 if the maps are identical and 0 if they are entirely unrelated to each other. Lark and Lapworth (2013) describes the offset

correlation in greater detail.
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3 Materials and methods

3.1 Basic approach175

We used the four methods, described above, to assess uncertainty in relation to sampling density, considering the problem of

measuring a soil property relevant to crop management: soil pH, and a property of the crop: Segrain concentration. We used

variograms from a national survey in Malawi for each variable (Gashu et al., 2021) to obtain sampling densities for further

notional sampling for an administrative district in Malawi, Rumphi District, with an area of 4769 km2. The outputs were

presented to participants. The participants considered each method in turn and were asked to select a sampling grid density180

based on the method. After doing this they were asked, for each method: Has the method helped you assess the implication

of uncertainty in spatial prediction in as far as it is controlled by sampling? They were then asked: Which of these methods

was easiest to interpret? Finally, the participants were asked to rank the method in terms of ease of use. Evaluation of the test

methods were done using an online questionnaire on Microsoft Forms.

The elicitation was conducted online using Zoom Video Communications (2022) in two sessions, 26th and 28th April 2022.185

There were two sessions in order to accommodate participants from different time zones, and to manage the participants in

smaller groups to allow for questions and feedback. The invited participants self-identified as (i) agronomist or soil scientist or

(ii) public health or nutrition specialists. The participants also self-assessed their statistical/mathematical background and their

frequency of use of statistics in their job role (perpetual, regular, occasional use).

We invited professionals working in agriculture, nutrition and health at civic organisations, universities, government depart-190

ments from Ethiopia, Malawi and wider GeoNutrition sites (United Kingdom, Zambia and Zimbabwe). In total we had 26

participants (18 were agronomists or soil scientists and 8 public health or nutrition specialists). Ethical approval to conduct this

study was granted by the University of Nottingham, School of Biosciences Research Ethics Committees (SBREC202122022FEO)

and participants gave informed consent to their participation and subsequent use of their responses.

In the exercise, an introductory talk was given to explain the study’s objectives. During the talk, we explained the four test195

methods (offset correlation, prediction intervals, conditional probabilities and implicit loss function) and how they can be used

to assess the implications of uncertainty in spatial predictions to determine appropriate sampling grid space for a geostatistical

survey. We explained the structure of the questionnaire to the participants. We emphasized to the participants that we were

not testing their mathematical/statistical skills and understanding but rather were testing the accessibility of the methods using

their responses.200

Evaluation of the test methods was done through a questionnaire, as shown on Table 1. Using the first four questions, Q1

to Q4, we wanted to find out if the method helped to identify a sampling grid spacing. On Q5, we wanted the participants to

assess the test methods in terms of their effectiveness in finding an appropriate grid spacing. We asked the participants to rank

these methods in an order of their effectiveness, in their experience, and in terms of finding a level of uncertainty that they were

able to tolerate when deciding about a sampling grid spacing. We asked them to put rank 1 as the most effective method and205

rank 4 the least.
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Table 1. The list of questions used to elicit stakeholder opinions about the set of methods that can help end-users to assess the implications

of uncertainty in spatial prediction in as far as this is controlled by sampling.

Number Question Response

Q1 We show you here some pairs of example maps of soil pH/Segrain, each pair being based on a different grid spacing, and 

so with a different offset correlation.  We also show scatter plots which illustrate the strength of the correlation.  What do 

you think is the smallest correlation that would be acceptable if one of the maps were to be used to make decisions?

(1) 0.4

(2) 0.5

(3) 0.6

(4) 0.7

(5) 0.8

(6) 0.9

Q2 You are shown different scenarios for the prediction of soil pH/Segrain from different grid spacings, which determine the 

width of the prediction interval.  What is the grid spacing that gives the widest prediction interval that would be acceptable 

if one of the maps were to be used to make decisions?

(1) Spacing=20km

(2) Spacing=40km

(3) Spacing=60km

(4) Spacing=80km

(5) Spacing=100km

(6) Spacing=120km

Q3 At some location on the map the true value of soil pH/Segrain indicates that an intervention is required, due to error in 

prediction there is a non-zero probability that the mapped soil pH/Segrain does not show this, this probability increases 

with grid spacing as shown on the graph.  What grid spacing do you think corresponds to the largest acceptable value of 

this probability? 

(1) Spacing=20km

(2) Spacing=40km

(3) Spacing=60km

(4) Spacing=80km

(5) Spacing=100km

(6) Spacing=120km

Q4 We have three specified implicit loss functions for predictions Segrain concentration over an area of  4,769 square 

kilometres (km2) for a district/administrative region.  With the implicit loss function we assume that the sample density is 

fixed (e.g. on budgetary grounds) and compute the loss function which would make that a rational choice.  We then ask 

does the loss function implied by the decision look sensible?

(1) Spacing=10km

(2) Spacing=20km

(3) Spacing=40km

Q5 Please rank these methods in an order of their effectiveness, in your experience, in terms of finding a level of uncertainty 

that you are able to tolerate when deciding about a sampling grid density. 

Rank 1 being MOST effective and 

Rank 4 the least

The offset correlation was the first method presented to the participants. This was followed by prediction intervals and

conditional probabilities. The implicit loss function was the final method presented to the participants. We started with a

measure we thought all our stakeholders would most easily understand and then moved on to the more complex methods.

3.2 Test Methods210

3.2.1 Statistical modelling and spatial prediction of grain Se concentration and soil pH

We used the data from a geostatistical survey conducted in Malawi for the GeoNutrition project (Gashu et al., 2021). Field

sampling was undertaken to support the spatial prediction of micronutrient concentration in crops and soil across Malawi.

Detailed description of soil and crop sampling in Malawi are presented by Gashu et al. (2021) and Botoman et al. (2022), and

the full data description is provided by Kumssa et al. (2022).215

We undertook exploratory analysis of soil pH and Segrain concentration using QQ plots, histograms and summary statistics

to check whether there was need for transformation of the variables for the assumption of normality. The data for Segrain

concentration were skewed and it was necessary to transform them to natural logarithms. The variance parameters for both soil
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pH and Segrain concentration were estimated by residual maximum likelihood using the likfit procedure in the geoR packages

(Diggle and Ribeiro, 2010) for the R platform (R Core Team, 2022) with a constant mean as the only fixed effect. These220

variance parameters were used in the subsequent test methods. The thresholds we considered, in this study for the prediction

intervals and conditional probabilities were soil pH of 5 and Segrain concentration of 38 µg kg−1. The threshold for soil pH is

5 in Malawi, such that if the pH at a location falls below 5, it would be necessary to apply lime (Chilimba et al., 2013). The

threshold Segrain concentration is 38 µg kg−1, such that a serving of 330g of grain flour provides a third of the daily estimated

average requirement of Segrain for an adult woman (Chagumaira et al., 2021). The intervention for soil pH was liming, and225

Segrain was provision of fortified food.

3.2.2 Prediction intervals

Using the variance parameters estimated in Section 3.2.1, we evaluated kriging variances at the centres of cells of square

grids of different spacings. We considered minimum and maximum grid spacings of 0.05 and 125 km, respectively, with an

increment of 0.5 km. We then computed the cell-centred block kriging variance the spacings we were considering by block230

kriging (Webster and Oliver, 2007). We considered different prediction for each variable but the prediction interval was fixed,

depending only on grid spacing. The three predictions of soil pH were 4.8, 5.5 and 6.0 and those of Segrain were 20, 55 and 90

µg kg−1. The predictions of soil pH and Segrain concentration were presented to the participants in a chart.

Figure 1. An example of a chart, for prediction intervals, with prediction of soil pH of 5.7 with prediction intervals and in relation to a

threshold of pH = 5.0.
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The chart consisted of (a) box plot of the distribution of the measured variable based on all soil samples from the study area,

(b) a graph of the lower and upper prediction intervals for the prediction at the point of interest for grid spacings from 0 to 120235

km, and lines indicating (c) the zt and (d) the prediction (see Figure 1, S7 and S8). From the chart, we asked the participants

to select the grid spacing that gives the widest prediction interval that would be acceptable if the mapped predictions were to

be used to make decisions about soil management or interventions to address human Se deficiency.

3.2.3 Conditional probability

The conditional probability is a measure of uncertainty in terms of the risk of failing to intervene at some location given that240

an intervention is needed. We presented the participants with a chart of conditional probabilities plotted against grid spacing

is shown on Figure 2 and Figure S9, and this probability increases with grid spacing. The conditional probability is bounded

on an interval [0,1]. A probability of 1, indicates that the prediction will be equivalent to the overall mean of the dataset. If the

prediction of Segrain or pH was below the threshold, zt, an intervention is needed. We then asked the participant at what grid

spacing they thought corresponded to the largest acceptable value of this probability.245
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Figure 2. An example of the chart of conditional probabilities plotted against grid spacing for (a) soil pH and (b) Segrain concentration. At a

location x0, Z̃ is the prediction and z is the value of the variable at that location.

3.2.4 Implicit loss functions

In order to compute the implicit loss function, we needed a cost model for Rumphi district. We used the function defined in

Lark and Knights (2015) to return the costs of n samples over an area A km2, i.e. a sample density of r = N/A samples per

km2 :
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C(n) = ω + vAr + βAtr, (12)250

where ω are the fixed costs, v cost of laboratory analysis per unit, and β the field costs per work day per team. The quantity

tr is time taken to sample per km2 at a density of r per km2. We obtained these costs for Rumphi district by considering the

available costs for crop sampling during the GeoNutrition survey conducted in Malawi at national-scale (Gashu et al., 2021;

Kumssa et al., 2022). A detailed description of how the costs were computed is presented in the Supplementary Material.

We fixed the asymmetry ratio at 1.5, assuming the elicited mean probability threshold from similar stakeholders in Ethiopia255

and Malawi (Chagumaira et al., 2022) can be regarded as an approximation of P0 which corresponds to a quantile of prediction

distribution. This implied a bigger loss for overestimation of the variables (i.e. failing to intervene of Segrain are smaller

than prediction). With the implicit loss function we assumed that the sample density is fixed (e.g. on budgetary grounds) and

computed the loss function which would make that a rational choice. We presented three specified implicit loss functions

for predictions of Segrain for Rumphi district, with an area of 4,769 km2 with sampling densities fixed at 10, 20 and 40km.260

Figure 3 and Figure S10, shows the implicit loss function for Segrain. We then asked the participants to identify the loss

function implied by the sampling decision that looked more plausible to make decisions about interventions to address human

Se deficiency.
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Figure 3. An example of specified implicit loss functions for predictions of Segrain concentration at a 10km grid spacing.
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3.2.5 Offset Correlation

We presented the participants with pairs of example maps of soil pH and Segrain concentration, each pair being based on a265

different grid spacing, and so with different offset correlation. We also showed scatter plots that illustrated the strength of

the correlation. Figure 4, shows an example of pairs of maps of Segrain concentration and the corresponding scatterplot (see

Figure S5 and S6). The correlation plots showed the kriging predictions for soil pH and Segrain concentration predicted with

parameters estimated in Section 3.2.1. We asked the participants the smallest offset correlation that would be acceptable if one

of the maps were to be used to make decisions based on the soil or grain property.270

Figure 4. The pairs of example maps of Segrain concentration and corresponding scatterplot for offset correlation 0.4.

3.3 Data Analysis

3.3.1 Test methods

The results for Q1 to Q4 were presented as contingency tables. The rows of each table correspond to the response (e.g.

the different grid spacings) and, the full table, the columns correspond to the frequency of use of statistics, nested, within

professional group and nested within variable used (soil pH or Segrain). Contingency tables allowed us to test the null hypothesis275

of random association of responses with the different factors in the columns. The expected number of responses under the null

hypothesis, ei,j in a cell [i, j], is a product of row (ni) and column (nj) totals dived by the total number of responses (N ), and
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this the null hypothesis of the contingency table which is equivalent to an additive log-linear model of the table. An alternative

to the additive model for the contingency table, is the saturated model that has an extra (nr − 1)(nc− 1) term that allows for

interaction amongst the columns and tables of the table. The proportions of observed responses oi,j may differ from ei,j in280

a cell [i, j] and the likelihood ratio statistic or deviance, L, can be used to provide evidence against the null hypothesis. The

likelihood ratio statistic is computed by

L = 2
∑

i=1

∑

j=1

oi,j log
oi,j

ei,j
. (13)

where L has an approximate χ2 distribution under the null hypothesis of random association between the rows and columns of

the table, with (nr − 1)(nc− 1) degrees of freedom (Christensen, 1996; Lawal, 2014). We fitted the log-linear models using285

the loglm function from the MASS package (Venables and Ripley, 2002) for the R platform.

A contingency table can be partitioned to evaluate whether there are differences in the responses of the participants based on

(i) variable used in the test method, (ii) professional group and (iii) by frequency of use of statistics. In Table 2, we illustrate

how the contingency table can be partitioned. The table can be partition into components corresponding to pooled table and

subtables of the full table.290

The full table in Table 2, was partitioned into subtables for soil pH (Subtable 1 in Figure 3), and Segrain concentration (Sub-

table 2 in Table 2). Then the pooled table completes the partition. The degrees of freedom and deviances for the three table

sum to the degrees of freedom and deviance of the full table. Using the contingency table, we could conclude if there are

differences in responses for the two variables. The full table in can further be partitioned, in a similar way, by the background

of the respondents i.e., professional group and frequency of use of statistics.295

In our study, we wanted to find out if the responses recorded by the stakeholders depended on the variable used (soil pH or

Segrain concentration), and background of the respondent. We expected the responses to differ. We thought the stakeholders

would have different perceptions of the impacts of the uncertainty for soil pH and Segrain concentration. There were more

agronomist or soil scientists than public health or nutrition specialists in the meeting, and we expected the priorities of the

groups to differ when making interventions for soil pH and Segrain concentration. We also thought the frequency of use of300

statistics would influence the choice of method used to select an appropriate grid spacing.

We first tested for differences responses recorded for each test method, by the variable used (soil pH or Segrain concentra-

tion) using contingency tables. The responses from stakeholders in different professional groups were pooled within the two

variables, as illustrated by the Pooled table 1 on Table 2. This gave us a six (responses) by two (variables) contingency table

with 5 degrees of freedom for the questions corresponding to offset correlation, prediction intervals and conditional probabili-305

ties (Q1 to Q3). However, for the implicit loss function we did not consider this because we only had a loss function for Segrain

concentration.

Second, we considered if the differences in the responses depended on the professional group of the respondent. Finally,

we considered whether the frequency of use of statistics in their job role had an impact on the responses recorded by the

respondents. For some questions, we noted differences in the responses when pooled within variable used (soil pH or Segrain310

concentration) and there was no differences in responses in professional groups and frequency of use of statistics for all
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questions. We further analysed the pooled tables or separate subtables to examine if the responses where uniformly distributed

and the null hypothesis is a random distribution. We wanted to test whether the responses of the participants were uniform, i.e.,

each grid spacing has equal likelihood of occurrence.

3.3.2 Assessment of the method315

The responses for the Q5 were tabulated with the methods as the columns and ranks as the rows. The participants ranked their

preferred method first. However, in our analysis we reversed the order by assigning a score of 4 for the most preferred method

and 1 for the least. We computed the mean ranks, r̄i, for each method for all respondents. We then separated the respondents

by their professional group and computed the mean ranks.

Finally we separated the respondents by their frequency of use of statistics in their job role. Under a null hypothesis of random320

ranking for set of k ranks, the expected mean rank is (k + 1)/2. The evidence against this hypothesis is measured a statistic

distributed as χ2(k− 1):

12n

k(k + 1)

k∑

i=1

{
r̄i−

k + 1
2

}
, (14)

where n is the total number of rankings (Marden, 1996).

4 Results325

4.1 Test methods

4.1.1 Method 1: Offset correlation

The full table for Q1 and the subsequent subtables are presented in the Appendix of the paper (Tables A1–A3). There were

no differences in the responses of the when the columns were pooled by the variable used, soil pH vs. Segrain concentration,

p = 0.656 (Table 3).330

There were no differences in the responses when the columns were also pooled within professional groups (p = 0.491) and

frequency of use of statistics (p = 0.595). Further analysis of the question on offset correlation was based on pooled counts,

see Table A3. There was strong evidence to reject the null hypothesis that the responses are uniformly distributed (p = 0.003).

Figure 5 shows the responses of how all the participants responded to Q1, for offset correlation.

Most of the respondents selected offset correlation of 0.7 as the smallest offset correlation that would be acceptable if one of335

the maps were to be used to make decisions based on the soil or grain property. We extracted the grid spacings, for soil pH and

Segrain, corresponding to the selected offset correlation of 0.7. The spacings were extracted from a plot of offset correlation

against grid spacing obtained from the variance parameters of each variable (see Figure S4). The grid spacing for soil pH is 25

km and for Segrain is 12.5 km. The grid spacing corresponding to the offset correlation for each variable were computed from

the variogram of the variable.340
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Table 3. Analysis of the question on offset correlation, Q1, according to variable used, professional group and frequency of use of statistics.

Deviance (L2) Degrees of freedom P

Full contingency table analysis

Full table 54.57 55 0.491

Pooled by variable used (pH v. Segrain) 3.29 5 0.656

Pooled by professional group 6.50 5 0.260

Pooled by frequency of use of statistics 8.35 10 0.595

Subtable–pooled counts: variable used

Soil pH 27.01 25 0.352

Segrain 24.2 25 0.507

Subtable–pooled counts: professional group

Agronomist or soil scientist 26.25 25 0.394

Public health or nutrition specialist 21.81 25 0.646

Subtable–pooled counts: frequency of use of statistics

Perpetual use of statistics 8.99 15 0.878

Occasional use of statistics 18.17 15 0.254

Regular use of statistics 19.06 15 0.211

Subtable–pooled counts

Responses are uniformly distributed 17.69 5 0.003

4.1.2 Prediction interval

There were no differences in the responses when pooled within the variable used, p = 0.656, for prediction intervals (Table 4).

We then pooled the responses within the professional groups, and there was no evidence to reject the null hypothesis (p =

0.498). Also, there were differences when responses were pooled within frequency of use of statistics, p = 0.152. Therefore,

further analysis of the question on prediction intervals was based on pooled counts of responses. There was no evidence to345

reject the null hypothesis that the responses are uniformly distributed (p = 0.169). Figure 6 shows the bar charts of how all the

participants responded to the Q2 for prediction intervals. For this method, there no clear choice of grid spacing for sampling

for soil pH and Segrain.

4.1.3 Conditional probabilities

Table 5 shows the results for partitioning the contingency table for the question on conditional probabilities, Q3. There was350

strong evidence to reject the null hypothesis when the columns were pooled by variable used, p≤ 0.001. Therefore, further

analysis was based on separate subtables for soil pH and Segrain concentration. For both variables, there were no differences
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Figure 5. Bar charts showing how the participants responded to Q1 for offset correlation.
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Figure 6. Bar charts showing how the participants responded to the Q2 for prediction intervals.
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Table 4. Analysis of the question on prediction interval, Q2, according to variable used, professional group and frequency of use of statistics.

Deviance (L2) Degrees of freedom P

Full contingency table analysis

Full table 56.0 55 0.437

Pooled by variable used (pH v. Segrain) 0.972 5 0.965

Pooled by professional group 4.36 5 0.498

Pooled by frequency of use of statistics 14.5 10 0.152

Subtable–pooled counts: variable used

Soil pH 23.8 25 0.531

Segrain 31.2 25 0.181

Subtable–pooled counts: professional group

Agronomist or soil scientist 26.5 25 0.381

Public health or nutrition specialist 25.1 25 0.455

Subtable- pooled counts: frequency of use of statistics

Perpetual use of statistics 9.68 15 0.840

Occasional use of statistics 16.88 15 0.330

Regular use of statistics 15.08 15 0.450

Subtable- pooled counts

Responses are uniformly distributed 7.77 5 0.169

in the responses when the columns were pooled within professional groups and frequency of use of statistics. For soil pH there

was strong evidence to reject the null hypothesis that the responses are uniformly distributed (p≤ 0.001). A similar result was

found for Segrain concentration (p≤ 0.001). The bar charts for the responses for the question on conditional probabilities for355

soil pH are presented in Figure 7a. The grid spacing chosen by the participants for soil pH is 60 km. The responses for Segrain

concentration are presented in Figure 7b. The grid spacing made was 40 km.

4.1.4 Implicit loss functions

The results for partitioning the contingency table for implicit loss function, Q4, are presented in Table 6. There were no

differences in the responses when the columns of the table were pooled within professional groups (p = 0.781) and frequency360

of use of statistics (p = 0.828). Further analysis of the question on implicit loss function was based on pooled counts of

responses. There was strong evidence to reject the null hypothesis that the responses are uniformly distributed (p≤ 0.001).

The bar charts for the responses pooled counts for all respondents are shown on Figure 8. The grid spacing chosen by the

participants for Segrain concentration is 20 km.
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Table 5. Analysis of the question on conditional probabilities, Q3, according to variable used, professional group and frequency of use of

statistics.

Deviance (L2) Degrees of freedom P

Full contingency table analysis

Full table 60.6 55 0.281

Pooled by variable used (pH v. Segrain) 26.7 5 < 0.001

Pooled by professional group 5.32 5 0.378

Pooled by frequency of use of statistics 14.5 10 0.152

Subtable–pooled counts: variable used

Soil pH 12.1 25 0.986

Segrain 21.8 25 0.647

Soil pH subtable–pooled counts: professional group

Pooled within professional group 4.48 5 0.483

Agronomist or soil scientist 3.10 10 0.979

Public health or nutrition specialist 4.50 10 0.922

Soil pH subtable–pooled counts: frequency of use of statistics

Pooled within frequency of use of statistics 0.889 10 1.00

Perpetual use of statistics 4.50 5 0.480

Occasional use of statistics 4.36 5 0.499

Regular use of statistics 2.33 5 0.802

Soil pH subtable–pooled counts

Responses are uniformly distributed 50.15 5 < 0.001

Segrain subtable–pooled counts: professional group

Pooled within professional group 4.77 5 0.445

Agronomist or soil scientist 11.0 10 0.361

Public health or nutrition specialist 6.09 10 0.808

Segrain subtable–pooled counts: frequency of use of statistics

Pooled within frequency of use of statistics 9.55 10 0.481

Perpetual use of statistics 1.73 5 0.886

Occasional use of statistics 5.55 5 0.353

Regular use of statistics 4.99 5 0.417

Segrain subtable–pooled counts

Responses are uniformly distributed 36.77 5 < 0.001
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Figure 7. Bar charts showing how all the participants responded to the Q3 for conditional probabilities for (a) soil pH and (b) Segrain

concentration.

4.2 Assessment of the test methods365

The question on ranking of the method was analysed in three ways. At first we computed the mean ranks for all participants

and tested for the evidence against the null hypothesis of random ranking. There is strong evidence to reject the null hypothesis

of random ranking, p≤ 0.001 (Table 7). Then the mean ranks were computed for each professional group and there was strong

evidence to reject the null hypothesis of random ranking in each group (p≤ 0.001). Finally, we separated the participants into

three groups according to their frequency of use of statistics in the job role, and computed the mean ranks in each group. There370

was strong evidence to reject the null hypothesis of random ranking in each group (p≤ 0.001).

The offset correlation was ranked as the most effective by all respondents (Figure 9a) and implicit loss function as the least

effective. Both professional groups (i.e. agronomist or soil scientist and public health or nutritionist) ranked offset correlation

first but differed in the second and least ranked methods (Figure 9b to 9c). Public health or nutrition specialists ranked second

prediction intervals and implicit loss function as the least effective. The agronomist or soil scientist group ranked prediction375

intervals as the least effective and conditional probabilities as second.

When respondents were separated by their frequency of use of statistics, offset correlation was also ranked first (Figure 9d

to 9f). Those who use statistics occasionally, in their job role, ranked the implicit loss function as the second best and the

prediction intervals the least. Conditional probabilities were ranked second and implicit loss function as the least effective by
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Table 6. Analysis of the question on implicit loss function, Q4, according to variable used, professional group and frequency of use of

statistics.

Deviance (L2) Degrees of freedom P

Full contingency table analysis

Full table 8.91 10 0.541

Pooled by professional group 0.49 2 0.781

Pooled by frequency of use of statistics 1.49 4 0.828

Subtable–pooled counts: professional group

Agronomist or soil scientist 2.33 4 0.676

Public health or nutrition specialist 6.09 4 0.193

Subtable- pooled counts: frequency of use of statistics

Perpetual use of statistics 1.73 2 0.422

Occasional use of statistics 1.73 2 0.422

Regular use of statistics 3.96 2 0.138

Subtable- pooled counts

Responses are uniformly distributed 54.00 2 < 0.001

10km 20km 40km

Grid Spacing

P
e
rc

e
n
ta

g
e

0

10

20

30

40

50

60

Figure 8. Bar charts showing how all the participants responded to the Q4 for implicit loss function.

21

https://doi.org/10.5194/gc-2023-1
Preprint. Discussion started: 6 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 7. Analysis of Q5 according to professional group and level of use of statistics in job role

Test Statistic (X2) Degrees of freedom P ∗

All respondents 61.1 3 < 0.001

Professional group

Agronomist or soil scientist 49 3 < 0.001

Public health or nutrition specialist 15.6 3 < 0.001

Frequency of use of statistics

Perpetual user of statistics 34 3 < 0.001

Occasional user of statistics 28.5 3 < 0.001

Regular user of statistics 49.8 3 < 0.001

those who regularly use statistics in the job role. Those who use statistic at all times, ranked conditional probabilities second.380

Prediction intervals and implicit loss functions were ranked last.

5 Discussion

In this study, we presented to groups of stakeholders, four methods (offset correlation, prediction intervals, conditional proba-

bilities and implicit loss functions) that can be used to support decisions on sampling grid spacing for a survey of soil pH and

Segrain. We wanted to find out if the stakeholders had a preference among the approaches presented to them. Offset correla-385

tion was ranked first as the method the stakeholders found easy to interpret (see Figure 9), and over 70% of the stakeholders

specified a correlation of 0.7 or more as a criteria for adequate sampling intensity. During the feedback session, stakeholders

highlighted that they were more familiar with the concept of correlation, with a closed interval of [0,1]. This explains why there

more consistent responses under this method. Our results are consistent with findings of Hsee (1998), that relative measures

of some uncertain quantity (Hsee gives an example of the size of a food serving relative to its container) are more readily390

evaluated than absolute measures (the size of serving). An easy-to-evaluate attribute, such as the bounded correlation of [0,1],

has a greater impact on a person’s judgement of utility. Hsee (1998) describe this as the “relation-to-reference” attribute. It is

therefore, not surprising that the offset correlation is highly-ranked.

The offset correlation will be more useful for stakeholders who are not able to express their quality requirement for infor-

mation in terms of quantities such as kriging variance. Furthermore, it is an intuitively meaningful measure of uncertainty, it395

recognises that spatial variation means that maps interpolated from offset grids will differ but that the more robust the sampling

strategy the more consistent they will be. There is a paradox here, however, in that the previous study Chagumaira et al. (2021)

showed that interpretation of survey outputs in terms of uncertainty was easiest for stakeholders with measures related directly

to a decision made with the information. The offset correlation is a general measure, and the absolute magnitude of uncertainty
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Figure 9. Ranking of test methods in terms on the most effective: (a) by all respondents, professional group: (b) agronomists or soil scientist

and (c) public health or nutritionist specialists, and frequency of use of statistics: (d) occasional use, (e) regular use and (f) perpetual use.
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has greater bearing on a specific decision. Indeed, Lark and Lapworth (2013) proposed the offset correlation particulary with400

general baseline surveys in mind. There is more research needed to develop sound but accessible ways to engage stakeholders

with uncertainty consistent across planning and interpretation.

All the stakeholders ranked conditional probabilities second. Under this method, the stakeholders selected spacings where

conditional probabilities was 1.0 or very close, i.e. the prediction equivalent to the overall mean. This suggest that the stake-

holders may not have fully understood the method. This finding is consistent with the general view that users of information405

commonly find probabilities difficult to interpret (Spiegelhalter et al., 2011). Because probabilities are bounded [0,1], the

‘relation-to-reference” attribute effect by Hsee (1998) may explain the previous preference for conditional probabilities (Jenk-

ins et al., 2019; Chagumaira et al., 2021), but stakeholders still struggle to interpret them correctly. Perhaps if the problem had

been framed in a different way, the stakeholders may have understood this method much better. More work is needed to in-

vestigate if framing the conditional probabilities in a different way would improve the judgement of utility of the stakeholders.410

More examples and more illustration may be needed in order to ‘prime’ the participants before the exercise.

Prediction intervals were ranked third by all the respondents, but there was no evidence against the null hypothesis of

random selection among the available spacings. During a feedback session, the stakeholders cited difficulties of assessing the

significance of a given prediction interval given that it can be associated with different prediction values. For very large or small

prediction values the uncertainty is immaterial, it is near decision threshold that it becomes important. Similarity, prediction415

intervals were not highly ranked by stakeholders for communicating uncertainty in maps (Chagumaira et al., 2021). Similar

reasons were given the respondents. We expected that prediction intervals to be of greatest value for specific interpretation of

particular sites, but would be of limited value for survey planning.

The implicit loss functions was the lowest-ranked method. The group also commented that they had difficulties understand-

ing this method, and most people opted for the central value. Loss functions are not readily accessible. It is difficult to define a420

loss function because it requires the cost of the errors, and we tried to show stakeholders some consistent approach with some

plausible design. The fact that they did not understand the loss functions, shows there is need for more specific examples to

help stakeholders think about loss function and their implications. It might help the stakeholders to provide some quantitative

information about the costs of the survey, cost associated with intervention campaigns and costs of the impacts on MNDs on a

country’s gross domestic production. A reflection of these would allow the stakeholder to use these implicit assumptions when425

they were making decisions for selecting a fixed grid spacing for working with (Lark and Knights, 2015).

The background of the stakeholders, i.e., professional group and frequency of use of statistics, had no influence on their

responses for all the methods. However, the background of the stakeholders had an influence on their ranking of the methods

in terms of their effectiveness. The offset correlation was ranked as the most effective by all professional groups and by all

respondents separated by frequency of use of statistics. Prediction intervals were ranked least effective by those respondents430

who identified as agronomist or soil scientist, but were ranked second by those in public health or nutrition.

At the begin of the online workshop, we explained each method with the aid of illustrations. After an explanation each

method, there was a feedback session to allow the participants opportunities to seek clarity on ambiguous and unfamiliar

concepts from the presenters. The participants’ questions were answered and explained in different ways by CC, RML and
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AEM, with the use of illustrations. However, there are limitations with online workshops. Most participants would have the435

cameras switched off, and the “unconscious” feedback to presenters by observing the reactions of participants could not be

noticed as during in-person workshops. The “unconscious” feedback would prompt the presenter to use a different approach to

explain unfamiliar concepts and ambiguous terms. Due to internet connectivity, online workshops are timed and there will less

time for feedback sessions. In such instances, respondents may seek clarity from the colleagues who have the same interests,

resulting in bias (Ball, 2019).440

All the methods may give different results for different variable, because they depend on the variogram of the variable

in question. There maybe different grid spacings selected for the different variables. A potential problem may exist, if the

variables were to be sampled in one survey and what spacing should be used? This is an important question that needs to

be addressed when planning for soil and crop sampling. It may be reasonable to opt for the grid spacing for the variable

that maybe the hardest to characterise. Another option would to consider some minimum quantile over all variables through445

a group elicitation. Black et al. (2008) proposed that a critical subset of soil properties are identified such that the overall

sampling scheme is satisfactory for all of the so-called ‘canary indicators’.

6 Conclusions

Users of information on soil variation need accessible ways of understanding the implications of sampling designs on spatial

prediction and their uncertainties. The background (professional group and frequency of use of statistics) of the stakeholder450

had no influence in the responses selected for each approach. Of these methods we tested, the offset correlation was most

favoured, but had no direct link to decision making and some methods of communication were not well understood (condi-

tional probabilities and implicit loss functions). The offset correlation will likely be more useful to stakeholders, with little or

no statistical background, who are unable to express their requirements of information quality based on other measures of un-

certainty. Although previous work has found that uncertainty of spatial information is best understood when presented in terms455

of a decision-specific metric, that was not the case here. This shows that more work must be done to develop and elucidate

decision specific approaches, perhaps through methods to elicit useful loss functions.

.

Appendix A

In this appendix, we present the full contingency table for Q1, for offset correlation, is presented as Table A1, in the appendix.460

The table shows how many individuals selected the given responses for offset correlation. This table is according to variable

used (soil pH vs. Segrain), professional group and frequency of use of statistics. Table A2 shows how many individuals selected

a given response to Q1, for offset correlation, when columns are pooled within variable used, soil pH or Segrain concentration.

Table A3 shows the pooled counts of the responses for Q1.
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Table A2. A subtable showing how many individuals selected a given response to Q1, for offset correlation, when columns are pooled within

variable used (soil pH vs. Segrain concentration).

Response soil pH Segrain

Offset=0.4 1 3

Offset=0.5 2 1

Offset=0.6 3 4

Offset=0.7 10 6

Offset=0.8 6 9

Offset=0.9 4 3

Table A3. Pooled responses given to the question on offset correlation.

Response Pooled counts

Offset=0.4 4

Offset=0.5 3

Offset=0.6 7

Offset=0.7 16

Offset=0.8 15

Offset=0.9 7
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