
Supplement

1 Theory

1.1 Conditional Probabilities

Calculating the joint probability that a location requires an intervention, and that the kriged estimate does not

indicate this

At some location the true value of a property, z, might or might not indicate that an intervention is required. For purposes of

this argument we assume that an intervention is required if z ≤ zt, a threshold value. We wish to compute the joint probability

that a random location (a) requires the intervention (i.e. z ≤ zt), and (b) that the prediction, Z̃ indicates otherwise, (i.e. Z̃ > zt).

If the kriging error, z−Z̃, were independent of z, then we might consider, assuming normal kriging errors and a known kriging

variance, the probability that Z̃ > zt, given a value Z = z , P
(
Z̃ > zt|z = Z

)
, and then compute its expected value over the

distribution of Z:
−∞∫

−∞

P
(
Z̃ > zt|z = Z

)
f(Z)d Z, (1)

where f(Z) denotes the PDF of Z. However, this independence does not hold. The kriging predictor, like any smoothing

estimator, is conditionally biased in the sense that the error:

εz = z− Z̃, (2)

is likely to be positive for large z and negative for small z.

We can write the covariance of z(x0) and εz(x0) at some location x0 as

Cov[z(xo),εz(x0)] = Var[Z(x0)]−λTc, (3)

where λ denotes the vector of nn kriging weights for observations used to make the prediction, and c denotes the vector of

covariances between each of these observations and Z(x0). From Eq (2)

Z̃ = z− εz ∴ Z̃ > zt ⇔ z− εz > zt ⇔ εz < z− zt

Figure S1 shows a plot of error (positive or negative) against the true value of z. The line is the function

εz = z− zt

1



Figure S1. Plot of error (positive or negative) against the true value of z.

Figure S2. Plot of error against the true value of z.

2



In Figure S2 the light-grey shaded region, unbounded where the line is dashed, corresponds to where

z ≤ zt

and

εz < z− zt,

i.e. to where the intervention is indicated if z is known without error, but Z̃ > zt. The other error condition is that z > zt and

Z̃ ≤ zt. This is represented by the dark grey space in Figure 2.

Table S1. Parameters of the joint distribution of Z and εz .

Mean of Z Population mean of the variable

Variance of Z A priori variance of the variable, i.e. c0 + c1.

Mean of εz 0, as kriging is unbiased

Variance of εz Kriging variance

Covariance of εz and Z Var[Z(x0)]−λTc

we may therefore, compute the joint probabilities that z(x0)≤ zt and εz < z− zt by

P (z(x0)< zt,εz < z(x0)− zt) =

∫ ∫
fz,εz (z,εz)dz dεz, (4)

where fz,εz (z,εz) is the joint normal distribution of z(x0) and εz with parameters in Table S1 and the corresponding probability

that z(x0)< zt is

P (z(x0)< zt) =

zt∫
−∞

fz(Z)dz, (5)

and the desired conditional probability

P (εz < z(x0)− zt|z(x0)< zt) =
P (z(x0)< zt,εz < z(x0)− zt)

P (z(x0)− zt)
. (6)
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1.2 Implicit loss function

Logistical cost model

In this section we describe how the function defined in Lark and Knights (2015) to return the costs of n samples over an area

A km2, with a sample density of r =N/A samples per km2:

C(n) = ω+vAr+βAtr, (7)

where ω are the fixed costs, v cost of laboratory analysis per unit, and β the field costs per work day per team. The variable tr

is time taken to sample per km2 at a density of r per km2.

Consider a unit area containing the n sample locations. Following Beardwood et al. (1959), the expected distance to travel

between sample points can be written as

D = k
√
n. (8)

If we change the area in which the sample points are distributed to some value A, then the distance travelled is scaled by
√
A

and so

DA = k
√
An, (9)

and so we may write the distance travelled to sample n points per unit area as

Dn = k

√
n

A
. (10)

Assuming that the rate of travel is a random variable independent of sample density, we can therefore conclude that the time

taken per unit area to travel between sample points is proportional to the square root of sample density

Tt = τ1

√
n

A
. (11)

Similarly, assuming that the sampling time is a random variable independent of sample density (time at a sample site), sampling

time per unit area is proportional to sample density

Ts = τ2
n

A
. (12)

Given these results, we may propose as a model for total sampling time per unit area

To = β1

√
n

A
+β2

n

A
+β0 +T + ε, (13)

where β0 is a constant to allow for fixed time requirements, T is a random effect of mean zero for between-team variation in

sampling time and ε is a random effect of mean zero for the between-day (residual) variation.
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Fitting to data

In order to compute the variable tr, we extracted the required data from the geostatical survey conducted in Malawi for the

GeoNutrition project (Gashu et al., 2021). There were 8 teams that collected a total of 1812 sites of soil and crop samples were

visited, this is described in detail by Gashu et al. (2021), Botoman et al. (2022) and Kumssa et al. (2022). For each team-day

from the GeoNutrition survey of Malawi we have extracted the following:

– Number of points sampled.

– Mean time spent travelling per sample, removing the maximum inter-sample interval each day due to ‘lunch break

effect’. The units were in minutes.

– Mean time spent at a sample site. The units were in minutes.

– Length of the sampling day. The units were in minutes. The mean value is 331.

– The total area sampled that day. This is defined as the area of the sample domain which is in the Voronoi cell for the

day’s sample points. Unit were in square kilometres (km2).

These variables are combined. We then compute the following:

– The total time spent sampling per unit area, To in Eq [13] above, for each team–day.

– Sample density, n
A , for each team–day.

– The square root of sample density.

We can then fit a linear mixed model for To in which the fixed effects are
√

n
A and n

A and in which team is a random effect.

The anova table for the model is as follows

Effect num DF denom DF F-ratio P

Square root of Sampling density 1 294 347.21 <0.0001

Sampling Density 1 294 9.12 0.0027

This shows significant effects of both powers of sample density.

The estimated model coefficients are as follows
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Figure S3. Scatter plot showing the data and fitted model.

Coefficient Estimate SE

β0 −0.007 0.51

β1 4.08 4.89

β2 33.6 11.12

The data and fitted model are shown bon Figure S3.

Worked example

Rumphi district: Area 4,769 km2
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Sample size Sample Density Predicted sample effort Total sample effort

/km−2 /min km−2 / team–days*

200 0.0419 2.238 35.6

500 0.1048 4.837 76.9

1000 0.2097 8.907 141.6

*Given total area of Rumphi and assuming a mean sampling day of 331 minutes (as above)
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2 Test methods: charts presented to the stakeholders
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Figure S4. A plot of offset correlation and grid spacing for (a) soil pH and (b) Segrain in Malawi.
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Figure S9. Graph showing the probability, given that an intervention is required at xo that, due to error in prediction, the mapped variable

does not show this. zt is the threshold of interest. (a) is for soil pH and (b) for Segrain concentration.
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Figure S10. Three specified implicit loss functions for predictions Se concentration in grain an administrative district in Malawi presented

to the participants.
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