Supplement

1 Theory
1.1 Conditional Probabilities

Calculating the joint probability that a location requires an intervention, and that the kriged estimate does not

indicate this

At some location the true value of a property, z, might or might not indicate that an intervention is required. For purposes of
this argument we assume that an intervention is required if z < z;, a threshold value. We wish to compute the joint probability
that a random location (a) requires the intervention (i.e. z < z;), and (b) that the prediction, Z indicates otherwise, (i.e. Z> 2t).
If the kriging error, z — Z, were independent of z, then we might consider, assuming normal kriging errors and a known kriging
variance, the probability that Z >z, givena value Z =z , P (Z >z|lz=2 ) , and then compute its expected value over the

distribution of Z:

/P(Z>zt|z:Z)f(Z)d Z, (1)
where f(Z) denotes the PDF of Z. However, this independence does not hold. The kriging predictor, like any smoothing

estimator, is conditionally biased in the sense that the error:

€, = z2—4, 2

is likely to be positive for large z and negative for small z.

We can write the covariance of z(x() and £, (x() at some location xq as

Cov [2(x,),e-(x0)] = Var[Z(x0)] — AT, 3)

where A\ denotes the vector of n,, kriging weights for observations used to make the prediction, and ¢ denotes the vector of

covariances between each of these observations and Z(xg). From Eq (2)
Z = Z—Ez.'.Z>Zt S Z—E, > = < Z— 2
Figure S1 shows a plot of error (positive or negative) against the true value of z. The line is the function

€, =2—2
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Figure S1. Plot of error (positive or negative) against the true value of z.

Figure S2. Plot of error against the true value of z.



In Figure S2 the light-grey shaded region, unbounded where the line is dashed, corresponds to where

2z < z
and

€, < zZ— 2%,

i.e. to where the intervention is indicated if z is known without error, but Z> 2. The other error condition is that z > z; and

Z < z. This is represented by the dark grey space in Figure 2.

Table S1. Parameters of the joint distribution of Z and €.

Mean of Z Population mean of the variable

Variance of Z A priori variance of the variable, i.e. co + c1.
Mean of €., 0, as kriging is unbiased

Variance of ¢, Kriging variance

Covariance of €, and Z  Var[Z(x0)] — ATc

we may therefore, compute the joint probabilities that z(x() < z; and €, < z — z; by

P(2(xq) < zt,6. < 2(Xx0) — 2¢) = //fzysz(z,sz)dz de,, @)

where f, . (z,e) is the joint normal distribution of z(x) and €, with parameters in Table S1 and the corresponding probability

that z(x¢) < 2z is

P(z(xq) < zt) = / f2(Z)dz, ®)

and the desired conditional probability

P(z(xq) < 21,6, < 2(X0) — 2t)
P(z(x0) — 2)

Ple, < z(xq) — zt|2(x0) < 2¢) = (6)



1.2 Implicit loss function
Logistical cost model

In this section we describe how the function defined in Lark and Knights (2015) to return the costs of n samples over an area

A km?, with a sample density of 7 = N/A samples per km?:

C(n) = w+ vAr + SAt,, (7N

where w are the fixed costs, v cost of laboratory analysis per unit, and S the field costs per work day per team. The variable ¢,
is time taken to sample per km? at a density of  per km?.
Consider a unit area containing the n sample locations. Following Beardwood et al. (1959), the expected distance to travel

between sample points can be written as

D = kyn. ®)
If we change the area in which the sample points are distributed to some value A, then the distance travelled is scaled by v/ A
and so

Dy = kVAn, )

and so we may write the distance travelled to sample n points per unit area as

Dy = ky/ 5. (10)

Assuming that the rate of travel is a random variable independent of sample density, we can therefore conclude that the time

taken per unit area to travel between sample points is proportional to the square root of sample density

T = Tl\/j‘ (11)

Similarly, assuming that the sampling time is a random variable independent of sample density (time at a sample site), sampling
time per unit area is proportional to sample density

Ts = 72%. (12)

Given these results, we may propose as a model for total sampling time per unit area

T, =61\/Z+/322+50+T+5, (13)

where 3y is a constant to allow for fixed time requirements, 7" is a random effect of mean zero for between-team variation in

sampling time and ¢ is a random effect of mean zero for the between-day (residual) variation.



Fitting to data

In order to compute the variable ¢,., we extracted the required data from the geostatical survey conducted in Malawi for the
GeoNutrition project (Gashu et al., 2021). There were 8 teams that collected a total of 1812 sites of soil and crop samples were
visited, this is described in detail by Gashu et al. (2021), Botoman et al. (2022) and Kumssa et al. (2022). For each team-day

from the GeoNutrition survey of Malawi we have extracted the following:

Number of points sampled.

Mean time spent travelling per sample, removing the maximum inter-sample interval each day due to ‘lunch break

effect’. The units were in minutes.

Mean time spent at a sample site. The units were in minutes.

Length of the sampling day. The units were in minutes. The mean value is 331.

The total area sampled that day. This is defined as the area of the sample domain which is in the Voronoi cell for the

day’s sample points. Unit were in square kilometres (km?).
These variables are combined. We then compute the following:

— The total time spent sampling per unit area, 7, in Eq [13] above, for each team—day.
— Sample density, %, for each team—day.

— The square root of sample density.

We can then fit a linear mixed model for 7, in which the fixed effects are ,/ % and % and in which team is a random effect.

The anova table for the model is as follows

Effect num DF  denom DF  F-ratio P
Square root of Sampling density 1 294 34721 <0.0001
Sampling Density 1 294 9.12 0.0027

This shows significant effects of both powers of sample density.

The estimated model coefficients are as follows
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Figure S3. Scatter plot showing the data and fitted model.

Coefficient Estimate SE

Bo —0.007 0.1
B1 408 4.89
B 33.6 11.12

The data and fitted model are shown bon Figure S3.
Worked example

Rumphi district: Area 4,769 km?



Sample size Sample Density Predicted sample effort Total sample effort

/km~—2 /min km—2 / team—days*
200 0.0419 2.238 35.6
500 0.1048 4.837 76.9
1000 0.2097 8.907 141.6

*Given total area of Rumphi and assuming a mean sampling day of 331 minutes (as above)



2 Test methods: charts presented to the stakeholders

(a) pH (b) Segrain
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Figure S4. A plot of offset correlation and grid spacing for (a) soil pH and (b) Segrain in Malawi.
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Figure S9. Graph showing the probability, given that an intervention is required at x,, that, due to error in prediction, the mapped variable

does not show this. z; is the threshold of interest. (a) is for soil pH and (b) for Segrain concentration.
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Figure S10. Three specified implicit loss functions for predictions Se concentration in grain an administrative district in Malawi presented

to the participants.
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