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Abstract. Insights from a geoscience communication activity, verified using preliminary investigations with an artificial neural 

network, illustrate that observation of humans’ abilities can help design an effective Artificial Intelligence or ‘AI’. Even given 

only one set of 'training' examples, survey participants could visually recognise which flow conditions created bedforms (e.g. 10 

sand dunes, riverbed ripples) from their shapes, but an interpreter's geoscience expertise does not help.  Together, these 

observations were interpreted as indicating that a machine learning algorithm might be trained successfully from limited data, 

particularly if it is 'helped' by pre-processing bedforms into a simple shape familiar from childhood play.  

1 Introduction 

Environmental flows shape the surface they flow over. The variety of features produced (e.g. sand ripples on a beach), known 15 

as bedforms, reflect and preserve characteristics (e.g. speed, depth) of the flowing ice, water or air (Venditti, 2012; Bullard et 

al., 2011; Storrar and Stokes, 2007). The relationships between bedform morphology and flow are contested where observation 

is extremely difficult, such as under ice-sheets (e.g. Hillier et al., 2018; King et al., 2009), and best understood for unidirectional 

water flow over sand in a laboratory setting, mimicking a river.  Even in this idealised fluvial setting, it is difficult to construct 

a 1-to-1 link between bedform type (e.g. ripples or dunes) and specific flow conditions (Venditti, 2012; Froehlich, 2020). 20 

Illustratively, ripples have a higher aspect ratio (height/length) than dunes (e.g. Allen, 1968); yet the observational ranges 

overlap (Venditti, 2012), creating uncertainty when attempting to link morphology with hydraulic conditions. Many variables 

related to hydraulics and/or the physics of sediment movement have been proposed to remove the overlap in bedform stability 

diagrams such as Fig. 1a. Only recently has a distinct and non-overlapping zonation of bedform type and flow-sediment 

condition been developed using a quantity called shear velocity (Duran Vinet et al., 2019). Inverting this result may help realise 25 

the aspiration of developing a means to reliably infer flow conditions from bedform morphology, which is often the only option 

for inferring past environmental conditions on Earth (Leary and Ganti, 2020) or Mars (Ohata et al., 2017; Edgett and Lancaster, 

1993). 
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Machine learning or 'AI' algorithms, such as Artificial Neural Networks (ANNs) have great potential in geomorphology (Sofia 30 

et al., 2016; Froehlich, 2020; Valentine and Kalnins, 2016; Shumack et al., 2020) and offer an opportunity to examine this 

problem as they do not assume simple (e.g. linear or 1-to-1) relationships between inputs and predicted variables (Wang et al., 

2009; Faruk, 2010). Unexploited morphological subtleties may exist by which to categorise bedforms, or even to accurately 

position them on stability diagrams. This work examines the scope for using ANNs to distinguish the flow conditions in which 

bedforms originated by asking if the ability exists in non-artificial (human) intelligence for two particulars: 35 

 

Q1 - Is it possible to identify the environment (e.g. river, desert) of a bedform's genesis from its shape? 

Q2 - In the fluvial environment, is it possible to distinguish flow conditions? 

2 Method, Data & Ethics 

An online survey was conducted, initially at the 'Non-equilibrium flows and landforms' workshop (19th May 2021), expanded 40 

to participants without geomorphological expertise using authors' close contacts (friends, colleagues, and family). For Q1, 

participants attributed distance-height profiles across 34 individual bedforms, and 13 bedform sequences (≥3 bedforms) to 

one of four environments (fluvial [river], glacial, marine, aeolian [desert]). For Q2, participants ranked three profiles according 

to flow strength (shear velocity), thrice for individual forms, and thrice for bedform sequences. Examples were provided to 

isolate visual shape analysis from prior knowledge (Fig. 1b), black and white profiles were used to exclude contextual clues 45 

(dataset characteristics, other features in the landscape), and the order of options (e.g. B, A, C) was shuffled for each participant 

to prevent bias. Scale (e.g. metres) readily distinguishes environment without using bedform shape, so it was not given. 

 

Ethical approval was given by the Ethics Review Sub-Committee at Loughborough University. 
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Aeolian data are ASTER (v2) across linear and transverse dune types from the Namib desert (Bullard et al., 2011), glacial are 

from near Lough Gara in Ireland (Hillier and Smith, 2008), fluvial are from four laboratory experiments (Expts. 1-4) of non-

linearly increasing shear velocity (Unsworth, 2015), and marine data are from the Irish Sea. Distance-height profiles of these 

data were created, although for the fluvial measurements 'time' was used as a proxy for 'distance' (see Fig. 1b). For the survey, 

representative examples of individual bedforms and sequences were manually selected from these datasets.  Pre-processing to 55 

estimate bedforms’ height (H) and width (W) - see Fig. 1c,d - used the Spatial Wavelet Transform (SWT) algorithm (Hillier, 

2008) and fitting of flat-topped cones (Hillier, 2006). 

 

ANN analysis to follow up the survey used a Multi-Layered Perceptron (MLP) with four hidden layers with 28, 56, 56 and 28 

nodes, each with a ReLU activation function. In a baseline analysis, input to predict the fluvial flow regime (coded by 60 

experiment number) was non-overlapping profile segments 160 seconds long. After this, to 'help' the ANN bedform shapes 
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(H, W) were input once each per analysis, either (i) individually or (ii) as pseudo-sequences - groups of five bedforms in 

increasing size order, selected at random without replacement. Weights and biases were updated using the Adam Optimiser of 

PyTorch using a loss function that calculates the Mean Squared Error, all within a feedforward back-propagation algorithm. 

3 Results 65 

 

Of the 42 survey participants 25 self-identified as geoscientists, and 16 did not.  For Q1, participants correctly identified the 

one of four environments (e.g. fluvial, aeolian) in which individual features originated 32% of the time, slightly if significantly 

(2-tailed t-test, p ≪ 0.01) better than the 25% expected of guesswork. This rises to 51% for bedform sequences. For Q2, 

participants ranked entirely correctly 3 flow strengths (Expts. 1-3) for 46% of individual features, and 60% of sequences, much 70 

better than the 16% expected of guesswork (p ≪ 0.01).  

 

In none of the questions did geoscientists perform better than non-geoscientists, with mean percentages of correct answers 

being indistinguishable (2-tailed t-test, p > 0.05). The overall sentiment is encapsulated by one comment: 

  75 

"I felt this was a geometrical exercise of recognising same patterns at different scales. I did not feel that my experience 

as an “expert” in bedforms really made any difference from, say, my son taking the test." 

 

Several participants commented that their ability to distinguish environments might be to do with characteristics of the data 

(e.g. smoothness due to data resolution), not bedform shape. This is a potential pitfall of training an ANN, avoided here by 80 

only analysing the fluvial data. 

 

In the baseline ANN analysis, flow regime was predicted poorly (r2 = 0.03). Fitting a simplified geometry (H, W) to bedforms 

improves results dramatically, particularly if pseudo-sequences of bedforms are used (Fig. 1e); individual forms are weakly 

predicted (light grey, r2 = 0.11), but sub-sets of 5 bedforms more strongly so (grey, r2 = 0.56), particularly if very small 85 

bedforms present in all experiments (H < 0.5 cm) are excluded (dark grey, r2 = 0.80). This is consistent with a visual assessment 

(Fig. 1d) where individual morphologies overlap between experiments but their trends, and averages over a number of 

bedforms, are distinctly different. 

4 Discussion 

Morphologies from differing environments (e.g. glacial, fluvial) can be viewed as similar, indicators of analogous processes 90 

at work (e.g. Shaw, 1983), and modelled with identical equations (e.g. Fowler, 2002; Duran Vinet et al., 2019) or statistics 
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(e.g. Hillier et al., 2016; Einstein, 1937). Despite similarities in appearance, the survey results clearly demonstrate a level of 

ability to distinguish flow conditions from distance-height data of the bed and, unsurprisingly, imply that an ANN should 

perform better if utilising sequences of bedforms rather than evaluating individual forms in isolation. Interestingly, 

geoscientists' a priori and contextual knowledge added little, indicating that all required visual cues lie within the distance-95 

height profiles.  Furthermore, one training dataset sufficed for the survey's participants, a stark contrast to the 1000s of datasets 

required to train ANNs performing pure pattern recognition (e.g. Bishop, 1996), suggesting that participants drew on 

significant previous learning (e.g. identification of basic idealized shapes). Together, these observations prompt the testable 

idea that an effective ANN might be efficiently trained by ‘helping’ it via pre-processing profiles into simple shape parameters 

that would have been readily understood by all participants (H, W). 100 

 

Preliminary analysis with an ANN supports our speculations. It demonstrates that an AI with predictive efficacy can be built 

using limited data, improved by using bedform sequences (Fig. 1e). The increase in predictive skill to 0.80 with pre-processing 

'help' demonstrates, in principle, the utility of this approach when building an effective AI for geomorphology that avoids the 

crippling need for 1000s of datasets when examples in nature are often limited in number. Speculatively, it follows that machine 105 

learning techniques might work well and be trained efficiently wherever non-experts make good decisions based on images. 

This study was on equilibrium conditions, but illustrates that ANNs may be key to linking forms and flow for transitional, non-

equilibrium conditions (e.g. Myrow et al., 2018).  

 

Code & data Availability 110 

For completeness and transparency, the survey form and anonymised answers are provided as supporting material. For the 

ANN, input data with associated README file and pseudo-code are provided to make the work reproducible. 
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Figure 1: (a) Illustrative bedform stability 'phase diagram' for unidirectional fluvial (i.e. river) bedforms, synthesized from multiple 
sources (Ohata et al., 2017; Lewis and McConchie, 1994; Southard and Boguchwal, 1990). Main types considered here (i.e. ripples 
and dunes) are highlighted. Experiments 1-4 are positioned indicatively. (b) Distance-height profiles (strictly speaking time-series) 
like those given unannotated to participants, i.e. one from each experiment 1-3, all scaled to the same dimensions. Horizontal axis is 190 
time because in the flume tank a stationary sensor recorded height as bedforms passed beneath it. (c) Example of how H and W are 
determined. Measured heights (thick black line) are processed using the SWT algorithm to identify bedforms, drawing a line beneath 
them (thin black line) then approximated as flat-topped cones (grey lines). SWT parameters as Hillier (2008). (d) Height-width 
relationships for the 4 experiments, with colours as in (a): lines are sliding means with W (Gaussian weights, width 60), shaded areas 
are full ranges for Expts. 1 & 4, and dots are the means (±2𝝈) of upper quartile of the data when the small bedforms (i.e. H < 0.5 195 
cm) are excluded. (e) Comparison of actual experiment number for out of sample prediction by the ANN using H and W: individual 
bedforms (light grey), subsets of 5 bedforms with (grey) and excluding (dark grey) small bedforms.  

 


