Replies to comments on gc-2021-13 "Editorial: Geoscience communication – Planning to make it publishable"

Comments were kindly provided by two reviewers (RC1, RC2) and one member of the geoscience community (CC1). We will use these to improve the editorial.

Please find below our response to the comments. Comments are in grey, and responses in black. Although a fully revised manuscript is not yet prepared, we use 'text changed' (or similar) to indicate some modifications where it was easiest to simply action the comment and provide a document with changes tracked - included at the end of this pdf; in this, comments are used to cross-reference most changes to the number (e.g. RC1.1) assigned to them here.

RC1 - Martin Archer

RC1.1 - This editorial provides an incredibly useful guide to the process of undertaking geoscience communication research that might be suitable for publication within the journal GC, and thus the manuscript would make a worthy contribution to the journal itself. The editorial is well structured and outlines key steps, backed up by many published examples, to convince readers that publication of communication activities/research is worthwhile and how one can go about this. I have only minor comments on the manuscript.

> Thank you for your positive and useful review.

General comments

RC1.2 - For activity-driven research, the authors have a tendency to focus only on impact evaluation. Indeed on lines 153-154 the authors state that "the GC editorial team would like to see investigations of the dialogue and the communication process itself", which would constitute a form of process evaluation. This statement comes across as though there are currently no such studies in GC, when this is not the case. Recent examples include: Archer et al. (2021b), Balmer (2021), Skinner (2020). In addition, in my opinion it would also be helpful for the authors to raise the possibility of audience evaluation, i.e. assessing who the audiences of communication activities actually were compared to targets, such as socially disadvantaged demographics (e.g. Archer, 2021) or those that don't typically engage with science (e.g. Archer, 2020). Both of these types of research are often performed in social science and educational research, so would be worth explicitly mentioning somewhere in the article so that a wider range of potential activity-led articles can be understood by readers and potential authors.

> Phraseology modified to avoid the implication that there are currently no such studies in GC, with additional citations also used. The possibility of audience evaluation is now raised.

RC1.3 - I think it would also be helpful for the authors to elaborate on how self-reflection may be used in constructing GC research articles, which is only briefly mentioned on line 434. Many times throughout the manuscript it is stated that qualitative and/or quantitative evidence is required, so reconciling how self-reflection may be included with this statement is required. Self-reflection, grounded in contemporary theory, is a form of Action Research. Mentioning how this may be leveraged in GC would be immensely helpful to potential authors that wish to go down this route.

> We have added the following text to the end of Section 8. It is still brief, but in keeping with the concise nature of this editorial and gives the reader a place to start further reading.

For example, you might consider adopting a formal method of reflection (see e.g. Gibbs, 1988; Kolb, 2015) and use this to contextualise your own experiences with that of any feedback that was collated from other researchers and/or participants. Similarly, you might adopt an autoethnographic approach, such as that demonstrated by Reano (2020), in which they engaged in critical reflections of their own practice and lived experiences to reveal how Indigenous research frameworks may enhance the geosciences in higher education.

RC1.4 - Line 16: "Behave" may be the wrong word, since this implies subsequent actions by participants/audiences. "Respond to these efforts" may be better, since this verb evokes a greater variety of outcomes such as attitudes and thoughts, and also makes clearer the subject of the sentence.

> Text modified.

RC1.5 - Line 26: "may involve" would be more accurate, since there is the possibility of impact that does not include such communication activities or even the active participation of the academic, as evidenced in many REF Impact cases.

> Please clarify. We cannot see where 'may involve' might fit L26. Do you mean to modify L25 to "illustrating what robust and publishable work for this journal may involve"?

RC1.6 - Lines 29-32: It would be useful to mention social science and educational research, established fields that have a great amount of overlap with science communication and public/societal engagement, somewhere here.

> We will consider how to best do this. [KEW to consider].

RC1.7 - Line 39: "robust evaluation"? > Text modified.

RC1.8 - Lines 56 & 278: Perhaps not the right phrase, since "tangential communication" usually refers to going off topic. Maybe "subtly" or "stealthily" communicate would be better?

> "Tangential" is the word selected by the authors of that study (Hut et al, 2019) that this comment is later related to in more detail (i.e. Example 2); "Video games have a great potential for tangential learning, i.e. learning things about the real world as a tangential benefit while primarily enjoying the experience (<u>Portnow</u>, 2012; <u>Mozelius et al.</u>, 2017)." So we have retained 'tangential'.

RC1.9 - Line 60: "Our target audience for this editorial" in order to clarify that you are not simply referring to the journal's target audience.

> Text modified.

RC1.10 - Line 63: "as well as" instead of the last "and"? > Text modified.

RC1.11 - Lines 74-75: "other geoscientific work" Please clarify, does this refer to (non- communication) geoscientific research?

> Yes, this refers to the geoscientific analyses, which can subsequently communicated if desired. Text modified.

RC1.12 - Lines 130-135: Personally, I would say this a little harsh on activity-driven research and ignores that qualitatively-drawn conclusions can offer broad insights into why specific aspects may or may not have been well received, which can therefore be applied elsewhere. I would suggest the authors temper this argument slightly.

> L123-135 is autobiographical for the lead author (Hillier), so whilst it might be a bit harsh, it is at least anecdotally true. Had I not been part of the study on the visualization hypothesis, I'd have revised the course based on my training as a lecturer, and then tweaked it further based on *ad hoc* self-reflection and end of module student feedback (i.e. 'Did it work?'). I certainly wouldn't have contributed anything back to the pedagogy of quantitative methods as I wouldn't have reported back to anyone, and I would likely have made some errors identified already in the literature, so the work would have been less useful than it could have been - still useful for the students, but less useful.

> My hope is that this section communicates a clearly as possible two approaches in a familiar situation to many geoscientists in order to encourage them to consider engagement with communication/educational literature more.

> Please let me know if you feel strongly that it's still too harsh. The text now clarifies that the approach I critique is an end-member.

RC1.13 - Line 200: "implementation or impact" to include a broader range of potential research questions? > Text modified.

RC1.14 - Line 200: The authors should highlight that any success metrics should be, where possible, benchmarked against other available data in published or grey literature and not simply arbitrary. > Text modified.

RC1.15 - Line 229: "emitted from the sun" is not technically correct since these waves can naturally arise in the solar wind itself as it travels towards Earth or as the wind interacts with Earth's magnetosphere. "due to the 'solar wind'" would be fine.

> Apologies. Text modified.

RC1.16 - Line 233: This sentence is a slight mischaracterisation of the authors. While the statement is true of the first author, the co-authors have different scientific backgrounds (e.g. medical science) but are principally public engagement professionals/practitioners.

> Apologies for inadvertently mischaracterising your co-authors. Text modified.

RC1.17 - Line 234: What the authors mean by "stakes" is not defined until much later, so perhaps should not be referred to at this point in the manuscript.

> Modified to avoid the term 'stakes' here, and added a reference Fig. 3

RC1.18 - Line 270: "or audience" I would suggest this is removed, since there were clear audiences in mind during the planning (geoscientists vs. non-geoscientists).

> We agree with the reviewer that there were clear audiences in mind, but for this editorial we wish to remain very explicit, and retain the words.

RC1.19 - Line 342: "Science communication researchers"? Not all professional practitioners are trained in evaluation/research methods and/or underlying theory.

> Good point. Text modified.

RC1.20 - Lines 349-349: "interdisciplinarity of the project and stakeholders"? In some of the examples presented, the authors already had interdisciplinary expertise that they could leverage in order to enable publication.

> Good point. Text modified to clarify.

RC1.21 - Lines 375-378: Perhaps the authors could comment that the act of collaborating with different disciplines might make authors to GC more skilled in new areas and thus able to continue publishing their communication activities/studies with less assistance in the future?

> Happy to add this comment. Added.

RC1.22 - Line 389: "might not" instead of "cannot" as this will also depend on the effect size. > Indeed. Changed.

RC1.23 - Lines 418-420: These appear to be primary sources of data, so should they not go on Line 400 along with the mention of graffiti walls (which included drawings as well as words)?

> These are primary sources of data, and would be better mentioned before this last paragraph. They have been moved to the paragraph above - L400 was specifically focussed on pre- post- methods to evaluate an activity.

RC1.24 - Line 418: Raising demographics here highlights the need to discuss demographic data, either as a primary or secondary data source (e.g. Archer, 2020, 2021).

> Demographic data are certainly useful, but we prefer to avoid diving too deep into any particular type of data, and are not claiming to be listing types exhaustively, rather to be illustrating. So, we have not added a specific discussion on demographic data.

RC1.25 - Line 424: "the size and significance of any potential changes" in order to highlight that there may be no real changes from before to after as a result of robust statistical analysis? > Text modified.

RC1.26 - Line 426: Perhaps add comments and likes alongside views for YouTube videos? > Text modified.

RC1.27 - Line 432: Quantitative linguistics concerns empirical properties and laws of languages, whereas what the authors refer to here is quantifying qualitative data. > Text modified.

RC1.28 - Figure 1: Panel a is somewhat misleading, since the collection of evaluative data requires priorplanning and thus the research element cannot be wholly unconnected from the activity. I would suggest the authors modify to include some slight overlap to the activity and research.

> For simplicity, we wish to illustrate end-member approaches to geoscience communication. So, whilst in practice we agree with the reviewer that research cannot be entirely decoupled from the activity, we have not included an overlap. However, we have clarified that these are end-member viewpoints in the figure caption and main text.

RC1.29 - Figure 2: The numbering does not start at the top left, which may be confusing for readers. I can see that this has been chosen to align with the arrows, however, if I understand correctly, the process is not a cycle thus such cyclical arrows are not warranted. I would suggest the authors use a simpler depiction either using typical flow chart style or even just a vertically numbered list.

> Thank you for this comment. We have amended the figure, striving for a simpler depiction. Words have been reduced, and greyscale adopted (as experimentation with colour schemes showed this was clearer as well as being more accessible e.g. to colour blind readers), and attempting to better display the nuance in the relationship between the boxes (e.g. simpler arrows, bold outline to more strongly connect step (v) and the research box).

> How best to depict the processes associated with the planning of a communication activity and the research inter-twined with it was a subject of intense and protracted debate amongst the *GC* editors co-authoring this paper. The elements colleagues wished to emphasise differed according to their background, and the conceptual simplification presented is synthesis and compromise. A few points relevant to the figure's design are outlined below.

- A numbered list with 'Activity planning' as a pre-cursor step to the 'Research' steps was unacceptable to about half of co-authors.
- A numbered list with 'Research' as a single step within the 'Activity planning' cycle was unacceptable to about half of co-authors.
- Having two lists was strongly rejected by some as it did not highlight the inter-connected nature of 'Research' and 'Activity'.
- Necessary elements to communicate were felt to be
 - A clear recognition (without judgement of this) that authors likely come from a background in with 'Research' or 'Activity' are considered primary, or at least are the default conceptual frame of the author.
 - Inter-connectedness between 'Activity Planning' and 'Research', with (i) overlap (ii) two-way exchange.
 - Cyclicity, particularly in 'Activity Planning' (i.e. reflecting and reviewing leads to new or inspires new activities - explicitly highlighted in point vii). Research also often inspires future research. Ideally, the research process would loop around and feed back into the activity planning, so we feel a cyclic arrow is also justified here.
 - Parity between 'Activity' and 'Research' (i.e. neither should necessarily be seen as a subactivity of the other, and an approach by authors with an emphasis on either should be seen as valid).

Line 56: "video games" (a space is missing) > Changed. Although online and magazine usage has changed, dictionaries keep two words.

Line 277: "is a risk" > Changed.

Line 355: "a simple survey" missing indefinite article > Changed.

Line 359: "a direct feed" missing indefinite article > Changed.

Line 419: "school children" space missing > In various dictionaries, 'schoolchildren' as a single word seems to be preferred.

Line 437: "make" remove the s > Changed.

Line 510 "recommended" add ed > Changed.

RC2 - Louise Arnal

This GC editorial builds on the first GC editorial by Illingworth et al. (2018), and provides a detailed route to publication aimed at geoscientists involved in geoscience communication activities. I found this editorial very insightful and a good balance between theory and illustrative examples of impactful GC publications. I wish I had read this editorial at the start of my SciComm/SciArt career during my PhD!

> Thank you.

Please find a few minor points below which will hopefully help improve this editorial for publication.

RC2.1 - P3 L74-77: The phrasing of these sentences makes the two first items: "complying with funders' requirements" and "communicating with relevant stakeholders", almost secondary and readers might dismiss them. I would suggest rephrasing the sentences to highlight the importance of all of these three valid points, and explicitly linking to sections of the paper that describe these points in more details.

> Point taken. The phraseology may not be as clear as it could be, and this could move beyond emphasis to make interpretation difficult for non-native speakers. Rephrased.

RC2.2 - P3 L76-77: I found reading this sentence about contributing to building a field of geoscience communication a little bit intimidating. The first thought I had was that as I didn't get any training as a geoscience communicator, am I still entitled to contributing to the field's literature? You tackle this point really well later in the paper when you talk about collaborating on geoscience communication activities and outputs, but I was wondering if it might be helpful to allude to this already now, for readers like me? > Altered text, adding " by which both new and experienced communicators contribute " to make it clear that all are entitled to contribute.

RC2.3 - Section 3: Another approach I have seen many geoscientists follow is a mix of both approaches illustrated in Fig. 1, where the activity design is done following approach 1a, and later reframed to publish it following approach 1b. I was wondering if you could comment on this and whether it is desirable?
> The main text and figure caption has been modified to explicitly state that these are end-member approaches. This allows for your observation of a mixture of the two approaches. In any research *post-hoc* recasting for publication is not ideal, although we suspect from our own experiences it is quite common.

RC2.4 - P5 L133-135: I suggest changing "useful" to "applicable" or "impactful". The outcomes might probably still be useful for a certain end, but it might be harder to draw any impact retrospectively.

> Thank you for this comment. We believe that 'potential less useful' allows for outcomes that might still be useful for some purposes.

RC2.5 - P5 L152-154: Investigations of the dialogue and communication process is a great idea! Could you given an example or two of papers that do this well? A minor additional comment, I found this point slightly out of place here. Consider moving it (along with other recommendations) to a "further recommendations" section at the end of the paper if you think it would work well.

> As pointed out by Reviewer 1, our phraseology inadvertently implied that there were no examples of this in *GC*. That would have been out of place. We have changed the phraseology to clarify that there are some examples of this in GC, but we might like to see them more frequently. This both provides examples, and justifies the current location of the lines.

RC2.6 - P7 L199-201: I found defining what success looks like a very hard task when writing my first SciArt project proposals, and very different to anything I had written in science before (especially as an early career scientist who had never written a grant application). In science, "success" is very abstract in that an experiment might be successful either if it fails or if it works as expected, because both outcomes are scientific findings in their own right. Could you maybe elaborate a bit more on this task and/or provide some useful literature/resources on the topic to guide readers?

> Thank you. We have elaborated on this a little more, providing a reference to literature (a book) to provide further guidance for readers.

Measuring success is largely based on two questions that you need to address at the start of any initiative: 'what' are your aims and objectives, and 'who' is your audience (Illingworth and Allen, 2020). In answering these question an aim can is 'what you want to achieve', while an objective should be thought of as 'the action(s) that you will take in order to realise an aim'. Each objective should be tied to a specific aim, and should also be SMART, i.e., Specific, Measurable, Achievable, Realistic, and Time-bound. Reflecting on the extent to which you have achieved these aims and objectives (ideally by using a reflective model; see Section 8.2) will help you to measure your success and also to better understand why certain aims and objectives were not met and what the result of this was for the initiative.

RC2.7 - P7 L212: Maybe reiterate here that they can be quantitative or qualitative data and give a few quick examples?

> Thank you for this suggestion. Reiterating certain aspects such as data being quantitative or qualitative, or giving examples would raise questions as to why these and not more or all aspects of data had been highlighted again. And, examples are given in Section 6 immediately below. So, we have not expanded 'Collect data'.

RC2.8 - P14 L428: Could you please define here what "network analysis" means?

> To remain concise, we refrain from adding descriptions of the methods noted. Instead, we provide a citation so that the reader can investigate further if they wish.

RC2.9 - P15 L469: I would add that these forms can usually be found directly via one's institute, for readers wondering where to find them.

> Text modified.

RC2.10 - Section 10: Here, you focus on GC publication as it is the target of this editorial. It might be worth noting here that widely accessible communication of research can also be achieved in different spaces using various formats to reach specific audiences, and that publishing in GC is the space and format you focus on here. E.g., Exhibition visitors who might not necessarily know about GC might find it interesting to find out about geoscientists' analysis of an exhibition via blog posts, a series of posts on social media, short videos, etc. > Thank you. We have added a sentence to reflect this further, onward communication.

RC2.11 - Section 11: Are the points in this section in a specific order? I would swap some of them around (e.g., 2 and 3 before 1), so this led me to wonder if these were in a particular order.

> They are in partial order. Point 1 is first as this is our key desire for the reader to understand i.e. please plan (before doing something) if you want a smooth route to publication. Point 7 is at the end to fit with the paper's structure. The rest a of somewhat equal importance, and can be seen as more or less important depending on the background of the geoscience communicator (specifically the co-authors).

RC2.12 - Figure 3: Consider adding a legend of what the different dots are on this figure. What is the fourth dot?

> We have changed the figure to remove the dots to avoid confusion. They were illustrative only because, as noted in the text, the positioning of the dot for any project is a subjective judgement of the investigators.

*Technical corrections:

- additional comma not needed before parenthesis is being closed. - brackets not needed around "Hut et al.". > Changed.

- "to" can be removed.

> Please clarify which line this is on.

- "ed" missing at the end of "recommend".

> Changed.

CC1 - Rhian Salmon

CC1.1 - This paper provides a useful encouragement for any prospective contributors to Geoscience Communication. It is primarily focused on the criteria and approaches that are likely to lead to successful publication in this journal. It does, however, seem to gloss-over what many would argue to be the hardest part of this kind of work, namely, analysing the data.

> Thank you. We respond to your comment about analysing the data in CC1.3 below.

CC1.2 - On page 7, a simple 6-point process is described. While I agree that it's critical to define "what success looks like", I would argue that analysis against this criteria alone will lead to an "evaluation" rather than a research paper. A research paper, more often than not, will have a deeper question beyond simple evaluation against a pre-defined success metric. Some explanation about the difference between these would be helpful. > We agree that 'what success looks like' is related to evaluation, and realise that the previous phraseology was overly focussed on 'evaluation'. This we did not consciously intend, and used your words about a deeper question to modify point 1 of the list in order to clarify that is only one sort of research question out of a rich landscape of potential questions.

CC1.3 - It was also surprising to me that no further padding was included around Step 5 "Analyse the data" (line 213). This is surely the hardest area for someone who has not been trained in these methodologies, and the part of the process where guidance and collaboration might be most helpful. The subsequent case studies provide excellent examples related to the level of specific expertise that might be required for this step, and section 8.2 expands on this a bit more, but it might be worth adding at least a sentence at this early stage indicating that this step requires particular research expertise and a substantial amount of work!

> Two sentences added to emphasise these points.

CC1.4 - Figure 2 provides an interesting approach to conceptualising the research planning framework, which I found helpful while reading the text. Two design suggestions related to this figure:

- the grey box in the middle I think needs to be labelled (v) rather than (iv) with reference to the stages on the left hand side (purple);

> Thank you. Yes. This has been changed.

- I think it would be more compelling if the grey box ALSO correlated with the cycle on the right hand side (green). This could be achieved if the green cycle was a mirror-image to the purple one, ie, running anticlockwise, with both cycles overlapping and passing through the box in the middle named "plan and undertake research-informed communication". Currently, it looks like that happens either before the research question is defined, or after the paper has been written.

> Thank you. We agree that it would be good to make it appear that the grey box was integral to, or expands to become, the cycle on the right. We have explored ways of doing this, including your suggestion. We have also tested different colours and found that displaying the figures in greyscale works very well. This will also aid readers with colour-blindness, and those who wish to print in black & white. The proposed figure is now simplified, and includes a bold black outline to relate box (v) more obviously to the research process on the right without making it appear to be an element within in.

CC1.5 - I was also surprised by the narrative related to how high or low stakes a particular initiative might carry. This appears initially at line 234, later at 349, and then is expanded in figure 3. While I appreciate that science communication research might require different amounts of rigour and depth depending on the outcome and impact, I think it is risky to infer that it's ok if some ("low stakes") science communication research might not need specific skillsets for their data analysis, and therefore might not "warrant wider interdisciplinary input".

> We quite firmly and explicitly suggest collaboration (e.g. L375 of reviewed text). The point here is that mistakes will have fewer implications so may be a good entry point for new workers learning skills. We feel that it is important that geoscientists do not need to necessarily feel they have to build a large team to do geoscience communication - or this starts to form a substantial barrier.

CC1.6 - I'm not entirely convinced of the value of Figure 3 overall. In addition, the relevance of the placement of the various dots is not clear from either the caption or the text – if they refer to specific case studies discussed in the paper then they need to be appropriately labelled or identified.

> To avoid confusion, we have amended the figure to remove the dots.

CC1.7 - Finally, the paper provides a useful overview of the methods that have been used to date in GC articles. I wonder, however, if the purpose of this article is to encourage greater breadth in submissions. If so, it might be worth noting that there are several additional approaches, and types of data, that may be used for documenting and publishing communication work, such as think-pieces, auto-ethnographic works or explorations using art and other creative processes. It's not clear from this paper if such articles would indeed be welcomed by GC – they certainly would present a different kind of "data" as that explored here. I would recommend making this clear either way (and , if not welcome, suggesting that such papers would be better suited to alternative journals focused on public engagement with science).

> Thank you. This paper outlines how prospective authors might consider turning their science communication and public engagement activities into publishable research, presenting several examples of research methods that have done so successfully in *Geoscience Communication*. However, we acknowledge that there are many other research methods that researchers might wish to utilise, including (but not limited to) autoethnographies, walking interviews, and discourse analysis. Many of these research methods have a trusted provenance in other disciplines such as social sciences and pedagogy but might be alien to researchers who have initially trained in the geosciences. For those researchers who are keen to try out some of these methods for themselves, we encourage them to both collaborate with experts from these other disciplines and also to make use of the new *GC Insight* manuscript type, which has been specifically designed to present innovative and well-founded ideas related to geoscience communication, which have not yet been comprehensively explored, in a concise way.

CC1.8 - Finally, it would be useful to also include a short section outlining the level of support that GC provides during the submission and review process. For example, is there a pre- submission "pitch" stage, do you offer suggestions for potential collaborators, what is the peer-review process, and what is your recommended approach to co-authorship. This things may differ from the main discipline in which the prospective authors or communicators are familiar with.

> The support provided by GC is described in the first editorial <u>https://gc.copernicus.org/articles/1/1/2018/</u>. It is *ad hoc*, based on conversations with the editorial team, rather than through a formalised process. It is therefore not something we can elaborate further on at this time. We will consider this further as an editorial team.

Despite these comments, I think it's great that this paper has been drafted and hope it will encourage further publication on this field.

> Thank you.

Editorial: Geoscience communication - Planning to make it publishable

¹John K. Hillier,²Katharine E. Welsh, ^{3,4}Mathew Stiller-Reeve, ⁵Rebecca K Priestley, ⁶Heidi A. Roop, ⁷Tiziana Lanza, ⁸Sam Illingworth.

¹Geography and Environment, Loughbrough University, Loughborough, LE11 3TU, UK.
 ²Department of Geography and International Development, University of Chester, Chester, CH1 4BJ, UK.
 ³Konsulent Stiller-Reeve, Valestrandsfossen, Norway.
 ⁴Center for Climate and Energy Transformation, University of Bergen, Bergen, Norway.
 ⁵Centre for Science in Society, Te Herenga Waka - Victoria University of Wellington, New Zealand
 ⁶Department of Soil, Water, and Climate, University of Minnesota, St Paul, Minnesota, USA

⁷Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy ⁸Department of Learning and Teaching Enhancement, Edinburgh Napier University, Edinburgh EH11 4BN

Correspondence to: John K Hillier (j.hillier@lboro.ac.uk)

Abstract. If you are a geoscientist doing work to achieve impact outside academia or engaging different audiences with the

- 15 geosciences, are you planning to make this publishable? If so, then plan. Such investigations into how people (academics, practitioners, other publics) respond to geoscience can use pragmatic, simple research methodologies accessible to the non-specialist, or be more complex. To employ a medical analogy, first aid is useful and the best option in some scenarios but calling a medic (i.e. a collaborator with experience of geoscience communication or relevant research methods) provides the contextual knowledge to identify a condition and opens up a diverse, more powerful range of treatment options. Here, we
- 20 expand upon the brief advice in the first editorial of *Geoscience Communication* (Illingworth et al., 2018), illustrating what constitutes robust and publishable work in this context, elucidating its key elements. Our aim is to help geoscience communicators plan a route to publication, and to illustrate how good engagement work that is already being done might be developed into publishable research.
- 25 Short Summary: In this editorial we expand upon the brief advice in the first editorial of Geoscience Communication (Illingworth et al., 2018), illustrating what constitutes robust and publishable work for this journal, elucidating its key elements. Our aim is to help geoscience communicators plan a route to publication, and to illustrate how good engagement work that is already being done might be developed into publishable research.

1 Introduction

30 Scientists are increasingly encouraged to have 'impact', effecting real-world changes (e.g. Reed, 2018; Hillier et al., 2019b), which involves communication with non-academic audiences. This communication seeks to involve a range of audiences (e.g. industry leaders, policymakers, students, community groups, indigenous communities, individual citizens) through a variety

Commented [JH1]: Modified after comment RC1.4

Commented [JH2]: RC1.6

It would be useful to mention social science and educational research, established fields that have a great amount of overlap with science communication and public/societal engagement, somewhere here We will consider how to do this. of activities (e.g. public events, co-writing for social or news media, art installations, classroom visits, workshops). While the interest in scientist-led engagement continues, there are many calls for a closer integration between science communication

35 theory and practice (Salmon and Roop, 2019; e.g. Salmon et al., 2017), and scholars in the field of science communication have spent decades documenting and developing effective methods and practices (e.g. Cheng et al., 2008; Bucchi and Trench, 2008). Similarly, many practitioners of geoscience engagement have lessons to share from their applied experiences.

When Geoscience Communication (GC) first launched in 2018, the aims of the journal were (Illingworth et al., 2018) to:

- 1. provide wider and more formal recognition for existing and future geoscience communication initiatives; and
- 2. better formalise the discipline of geoscience communication.

This formalization included a call for increasingly robust evaluation and assessment of geoscience communication efforts through the use of evaluation instruments and social science methods. In its three years, *GC* has published some excellent research articles, making progress on these aims. The current editors of *GC*, though, see the value of exploring the core aspects of what rigorous, evidenced-based geoscience communication research can look like.

As an initial step to achieving the journal's aim, the first editorial in *Geoscience Communication* (Illingworth et al., 2018) 50 describes what the editorial team wish a paper to look like, in particular highlighting two requirements of good practice:

- 1. all research articles should include qualitative and/or quantitative evidence, and not solely anecdotal reporting; and
- all research articles should include an explicitly marked section that considers the ethics of the investigation and should also demonstrate how the research has received ethical clearance from their research institute or professional body.

55

40

This editorial expands upon these requirements to provide guidance on what constitutes robust and publishable peer-reviewed research in this journal. We use the term 'geoscience communication' to refer to the range of activities included in *GC*; these fall within a spectrum. At one end is activity-led work that might variously be known as education, outreach, communication, or engagement (e.g. science theatre as a medium for effective dialogue), and at the other end is curiosity-led research (e.g. how video games tangentially communicate geoscientific concepts) into how people engage with geoscience. The advice in this paper is based on the experience of the current editors, which includes geoscience research, knowledge exchange, science communication and public engagement with science, geoscience education, and the application of social science methods.

65 Our target audience for this editorial is two-fold. First, we wish to encourage those who are already doing excellent geoscience communication work but are not publishing it. Second, we would like to support those with less experience who are eager to

Commented [JH4]: RC1.9

Commented [JH3]: RC1.7

publish what they have done or will do, but perhaps have not yet considered how to add the necessary rigour into their work. The desire is to convince the former that publication is worthwhile and cost effective in terms of time as well as achievable, and to facilitate the latter in achieving the required quality of study.

70

This article starts by making a case for publishing papers relating to geoscience communication work (Section 2). We then outline what makes a geoscience communication study publishable as a research article in a peer-reviewed journal (Section 3) and give a step-by-step guide to designing publishable investigations, including exemplar studies and a suggestion of when it might be best to reach out to more experienced colleagues (Sections 4-7). Finally, we cover ethics to demystify this requirement

75 (Section 8), provide an introductory toolkit of research techniques (Section 9), and discuss how to make your article accessible (Section 10), before finishing with a basic framework for turning geoscience communication work into research articles suitable for publications in *GC* (Section 11).

2 Why publish work on geoscience communication?

Publishing work on geoscience communication has <u>multi-faceted</u> value, <u>and</u> not just as a journal output in addition to those reporting <u>aproject's underpinning</u> geoscientific work. It is often needed to comply with a funder's requirements, <u>and is in itself</u> a means of communicating with relevant stakeholders (<u>via stakeholders</u> reading or co-writing an article). Publishing in a peer reviewed journal also has value in building a field of geoscience communication, a mechanism <u>by which both new and</u> <u>experienced communicators</u> contribute to increasing the quality and effectiveness of the communication.

85 In recent years, it has become desirable, if not required, to incorporate a plan for engagement with non-academic audiences (e.g. practitioners, non-specialist citizens, other publics - see Illingworth (2020a)) into the design of scientific projects. Illustratively, there is demand from funding bodies in various countries (e.g. Australia, USA, UK) for a more effective dialogue to share science, leading to changes and benefits outside academia. Specifically, this demand involves the inclusion and rigorous assessment of activities relating to geoscience communication within competitive funding applications.

90

In the UK, 'impact' is the term used to describe the influence that underlying research has outside academia (Reed, 2018). The UK governmental funding body, UK Research & Innovation (UKRI; <u>https://www.ukri.org</u>, last access: 22 March 2021), defines impact as:

- 95
- "An effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia".

Commented [JH5]: Sentence modified in response to RC1.10

Commented [JH6]: RC2.1 - First sentence rephrased and simplified.

Commented [JH8]: RC2.2

This ranges from 'awareness raising' (e.g. through co-working with stakeholders) to policy changes (Reed, 2018). In 2020, for most UKRI grants, a separate 'Pathways to Impact' statement describing the approach that will be taken to deliver impact was

- 100 discontinued, replaced by a requirement for this to be included within the main body of the application, indicative of a continued increase in the importance of impact. Indeed, one recent large funding scheme (the 'Industrial Strategy Challenge Fund' of GBP 4.7 billion) weights impact only slightly less than research excellence, and in another (the 'Global Challenges Research Fund' of GBP 1.5 billion) it is the main objective (UKRI, 2018, 2017). Similarly, in New Zealand, the 'Unlocking Curious Minds Contestable Fund', which offers up to \$2 million of annual funding for STEM engagement projects (Curious
- 105 Minds, 2019), requires funded projects to report on how they are measuring 'the success' of the project along with an 'assessment of what the project is achieving' (Curious Minds, 2020). The EU, in initiatives such as Horizon 2020, has 'impact' defined similarly to the UK, but with 'expected impacts' clearly defined in its calls for proposals and integrated as a core evaluation (EC, 2018; Reed, 2020). In the USA the National Science Foundation (NSF) includes the potential of the research to achieve societally relevant outcomes within its 'broader impacts' requirement (NSF, 2014).
- 110

115

make it possible.

In many cases, therefore, geoscience communication efforts are already being rigorously designed and evaluated. But, at *Geoscience Communication* we believe that these efforts should be more than a box-ticking exercise to meet funders' requirements. Publishing in a peer-reviewed journal undoubtedly involves significant additional work but, importantly, publication can lead to improved practice (i.e. the work being done better) by drawing upon past work as recorded, and ratified, in previous such journal articles. Now that we have argued that publication is desirable, we consider the characteristics that

3 What makes geoscience communication work publishable?

Geoscience Communication (GC) is a journal that publishes peer-reviewed research. A geoscientist knows what is required to create publishable scientific research within their own core discipline. However, it may not be clear what is involved to do so
 for a communications activity. So, what makes geoscience work publishable in GC? Illingworth et al. (2018) put the advice very concisely: "All research articles should include qualitative and/or quantitative evidence, and not solely anecdotal reporting". Therefore, research in GC typically consists of the presentation of a research question or hypothesis and the testing of this (i.e. use of the scientific method).

Figure 1 illustrates two extreme, end-member ways in which a geoscience communicator might involve research in their practice. In Fig. 1a, the communication activity is at the fore of the researcher's mind and is subsequently analysed. Here, the research element of the work is overwhelmingly in post-activity evaluation. Alternatively - and preferably - the work is driven by a specific research question (maybe one that is also embedded in previously published work), and the activity forms part of answering that question (see Fig. 1b). Conceptually, the activity itself could be identical, it is the approach to the project that

4

Commented [JH9]: RC1.28

- 130 differs. To link this with something familiar to many geoscientists, consider the approaches to improving a 12-week module for geoscience undergraduate students. Signoretta et al (2014) revamped a quantitative methods course in order to test the hypothesis that using visualizations (e.g. maps) would improve learner outcomes. Their approach was research-led (Fig. 1b); a particular activity (delivery of a module) needed improving, but driven by funding through the UK government, the aim was to garner widely applicable insights into how this sort of teaching might be improved across the UK. Specifically, the
- 135 visualization hypothesis arose from the peer-reviewed pedagogical literature, and the activity of delivering the module was part of the research plan. Alternatively, they might have adopted an activity-led approach (Fig. 1a). If they had made the same changes based upon a personal view in isolation from an academic (i.e. pedagogical) framework, and then decided to evaluate the impact, the research question might have been paraphrased as 'Did it work?' with the research consisting of an evaluation. This is a valid approach, although it comes with a risk that the outcomes are potentially less useful than they might have been
- 140 (e.g. if a similar piece of work already exists, or if it is difficult to implement the insights elsewhere if not grounded in a theory that others recognise).

It is fundamental to note that even if the main interest of the author might be in the communication activity itself, what makes it publishable in a peer-reviewed journal such as GC is research that contains a novel insight. When planning publishable work, we encourage integration of research question development and activity planning into a single process, whichever of these is dominant within a project. To elaborate on what this means in practice, the next sections expand upon the development of a research-led approach.

4 A spectrum of geoscience communication

Publishable geoscience communication can be viewed as falling within a spectrum that is based upon the primary motivation

- 150 of the lead author. At one end is activity-led work that might variously be known as education, outreach, communication, or engagement, and at the other end is curiosity-led research into how people engage with geoscience. This is illustrated by the banner at the top of Fig. 2; position on this spectrum reflects which parts of the planning process might be foremost in an author's mind.
- Of research articles published in GC since mid-2018, roughly half are activity-led, commonly framed as evaluations of a communications activity. Activities include an ephemeral sculpture (Lancaster, 2020), toolkits for science outreach (Locritani et al., 2020), serious games (Skinner, 2020), and ozone monitoring exercises for use in tertiary and higher education (Ramirez-Gonzalez et al., 2020). In addition to evaluations of how much more an audience understands (i.e. a 'deficit model') the GC editorial team would like to see <u>a variety of investigations more often represented, such as</u> of the dialogue and the

160 communication process itself (e.g. Illingworth, 2017; Balmer, 2021) or the audiences actually reached by activities (e.g.

Commented [JH10]: RC1.2

Archer, 2021). Often this sort of insight comes through in narrative or other more imaginative and interdisciplinary approaches to evaluation.

The other half of GC papers are broadly curiosity-led research investigations into the processes and mechanisms at work in

165 geoscience communication and how humans (academics, practitioners, other publics) engage with and engage in geoscience. This encompasses a wide spectrum of potential topics (see Illingworth et al., 2018). For example, Hillier et al (2019b) seek to understand what motivates academics to collaborate with, and thus communicate with, industry partners; Hut et al (2019) are curious as to whether geoscientists are better than the wider public at distinguishing real and computer generated landscapes; and Deves et al (2019) probe the biases in media coverage of seismic risks.

170

Considering these papers in any detail, however, emphasises that our characterization in Fig. 1 is deliberately simplistic. The structure of projects and how a plan to publish geoscience communication work may be built into them is considered further below.

5 Planning for publication

175 The single planning framework in Fig. 2 is applicable wherever on the spectrum of motivation (Fig. 2 banner) authors identify their work to lie. *GC* recognises a variety in authors' perspectives, motivations, resources, and experience, and also that they may be (or have been) more or less cognizant of application and impact (left) or research (right). In practice this means that *GC* accepts papers that focus on one part, while encouraging fully integrated studies; an example of such a study is Archer et al (2021b), which assesses a geoscience communication initiative as an activity in itself but does this by using a robust evaluation set into an appropriate theoretical framework of how such initiatives are designed, so that portable lessons can be

learnt and applied more widely and theory advanced.

Existing resources, frameworks and tools can provide detailed guidance on planning your communication activities (Cooke et al., 2017; Illingworth, 2017; Salmon and Roop, 2019), but here we focus on the broad steps involved in designing geoscience
communication efforts aligned with leading science communication practices and in a way that can facilitate the publication of these efforts. We pull out and emphasise the research process (right), not to separate it, but rather to provide a familiar point of reference for practicing geoscientists while noting some important additions (e.g. ethics).

As you plan your paper for *GC*, consider the process shown in Fig. 2. At its core is a research process much like that which will be familiar to geoscientists in their scientific work (<u>light grey</u>), but the framing and purpose which surround and guide the research (<u>dark grey</u>) need a different sort of consideration. In terms of framing or defining a geoscience communication activity, particularly at the activity-led end of the spectrum, when you plan your communication activity it is important to be clear about your aim and who your audience will be. Are you trying

- 195 to encourage behaviour change? Raise awareness of a topic, issue or subject? Influence policy? Inspire more students to pursue careers in Science, Technology, Engineering and Math (STEM)? The answers to these questions should influence how you plan your activity, but also how you will gauge its impact and success. <u>Measuring success is largely based on two questions that you need to address at the start of any initiative: 'what' are your aims and objectives, and 'who' is your audience</u> (Illingworth and Allen, 2020). In answering these question an aim can is 'what you want to achieve', while an objective should be thought
- 200 of as 'the action(s) that you will take in order to realise an aim'. Each objective should be tied to a specific aim, and should also be SMART, i.e., Specific, Measurable, Achievable, Realistic, and Time-bound. Reflecting on the extent to which you have achieved these aims and objectives (ideally by using a reflective model; see Section 8.2) will help you to measure your success and also to better understand why certain aims and objectives were not met and what the result of this was for the initiative. Defining your audience is central for understanding how to shape your activities and messages and to identify if you need to find collaborators who can help in various ways (e.g. in project design, by being appropriate intermediaries) and in
- some circumstances this is highly recommended (see Section 7).

215

225

For the research element itself (light grey box in Fig. 2), as you plan your paper for GC, consider the following process. It is much like a research process that will be familiar to geoscientists in their scientific work. Be aware, however, that there are a

- 210 couple of important points you may be unfamiliar with, particularly if it is not dominantly a curiosity-led investigation (e.g. with a more immediate eye on impact or behaviour change):
 - 1. Define your research question(s). For curiosity-led work (e.g. Hut et al., 2019) a testable hypothesis is the starting point but, more often than not, any work will benefit from a deeper question beyond simple evaluation. If you are planning to evaluate the impact or implementation of your activity you should first clearly define what 'success' looks like, i.e. what are you hoping to achieve? If you have carried out your activity already, then ensure you draft a clear research question before you continue with data collection and analysis. If possible, success metrics should be benchmarked against published data. In all cases we highly recommend that you draft the research question as you plan your geoscience communication activity.
- Identify appropriate methods to collect and analyse the data to answer the questions (Section 7 & 8). Here you need to test your geoscience communication-related hypothesis, or gauge how your activity has been successful. Illustratively, think about what data you need to evaluate your <u>hypothesis</u>. Alternatively, what sort of analysis, evaluation, or interrogation will you do to determine the effectiveness, or otherwise, of your project?
 - Ethical approval (Section 9). This important element likely differs from the research processes that many
 geoscientists are used to. If your data-gathering methods involve interviewing or collecting data from human subjects,

7

Commented [JH11]: 3 sentences added in response to RC2.6

Commented [JH12]: CC1.2

Commented [JH13]: RC1.13

Commented [JH14]: RC1.14

be sure to obtain ethical approval before you start the data-gathering process (and follow required specified ethical practices throughout the research and writing process).

- 4. Collect data. This will involve familiar issues (e.g. organisational, logistical).
- 5. Analyse the data: As with any research, this is often time-consuming and challenging. The case studies (Section 6) illustrate types of analysis, and Section 8 gives a scattering of examples used in GC papers as pointers to the methodological skills that may be required.
- 6. Write your paper (Section 10). Remember that the audience of *GC* spans many fields and disciplines. When writing your paper, please endeavour to write clearly and concisely, avoid jargon (see e.g. Venhuizen et al., 2019) and include critical structural elements you will be familiar with (e.g. introduction, methods, results, discussion, conclusions).

235

230

The best geoscience communication efforts will be *informed by* research and will *contribute to* research. In the following section we give some examples of this.

6 Three Case Studies

To illuminate aspects of the process of creating a publishable piece of geoscience communication, and the framework in Figure 240 2, three examples published in *GC* have been selected. Examples 1 and 2 illustrate the spectrum of authors' motivation, while the third exemplifies the potential benefits of reaching out to colleagues across disciplines for support and collaboration.

6.1 Example 1

Martin Archer and colleagues carried out an interesting exhibit about sonification at a Science Museum in London (Archer et al., 2021a). Their study finds itself securely in the activity-driven end of the project spectrum in Fig. 2. They planned and carried out a geoscience communication activity, and then evaluated its impact. The aim of the installation was to better communicate the dynamic and active nature of space by converting physical phenomena into sounds and allowing visitors to experience them by listening to them. Ultra-low frequency plasma waves due to the 'solar wind' are analogous to ordinary sound waves, and the authors presented measurements of these for visitors to hear (using headphones) at their installation.

250 <u>Archer is a qualified natural/space scientist and experienced science communicator, whilst the co-authors have varied scientific backgrounds (e.g. medical science) but are principally public engagement professionals/practitioners. The audience and research aims were important, but also carried a low enough risk of adverse consequences not to warrant wider interdisciplinary input (see Fig. 3). Here is an overview of what they did in relation to the step-by-step process above (see light grey box on Fig. 2):</u>

8

Commented [JH15]: CC1.3

Commented [JH16]: RC1.15 i.e. Archer required this change to make it correct. So changed.

Commented [JH17]: RC1.16 again, change requested by Archer, who is the authority on his colleagues. So changed.

- Define your research question(s): The authors' overarching research question was whether their soundscape exhibit
 had had an impact on the people who attended did it change their conceptions of space and language they used to
 describe it? They also had a secondary, technical objective to demonstrate some elements of novelty in the approach
 they implemented to evaluate the exhibit's impact.
- Identify appropriate methods to collect the data to answer the questions: Their soundscape exhibit was visited by (mainly) young families who were guided around while listening to the audial experiences of space. The authors chose to use 'graffiti walls' to collect data to answer their research questions. The novelty in this method arises from the use of graffiti walls both before and after visiting the exhibit in order to evaluate any change. The other novelty in their approach was their use of two complementary statistical methods to analyse the changes they observed on the graffiti walls.
 - 3. Ethical approval: The authors followed the Ethical Guidelines of the British Educational Research Association (BERA, 2018) and discussed ethical issues with the institutional funders and the Science Museum before the activity was run. Children only partook in the data collection if they were accompanied, and all data were anonymous.
 - Collect data: All the data were collected during the four days the exhibit was open. In total, the graffiti walls before
 and after the soundscape had 535 and 446 responses respectively.
 - 5. Analyse the data: In order to identify any change in attitudes the authors needed to analyse and compare the data from the graffiti walls both before and after the soundscape. They chose two different techniques to do this. They firstly applied quantitative linguistics to analyse how the diversity of words used by the participants changed. They secondly used thematic analysis to find groups of words connected to broader themes.
- 6. Write your paper: Archer and colleagues wrote up the paper with clear descriptions of all the above steps. It is a good example of how a well-designed science communication activity can be evaluated to show that it had a real impact on the audience that experienced it.

6.2 Example 2

270

An example of a 'curiosity-led' research paper is provided by Hut et al (2019). Here the authors of the study were inspired to 280 investigate if geoscientific 'experts' were better at identifying unrealistic geological features in the videogames than 'nonexperts'.

The idea for the paper was originally conceived by Hut, Illingworth, and Skinner following discussions of the worldbuilding in the videogame *The Legend of Zelda: Breath of the Wild.* After discussing the approach that they wanted to adopt (a

- 285 quantitative analysis that ranked participants' confidence in identifying geological features that were either real or from a game) they decided that additional input from a statistical and digital visualisation expert would help in the data collection and analysis phase, and so they approached Albers at the start of the project to help co-design and deliver the study.
 - 9

As a curiosity-led research paper, the focus in planning was not on an activity or audience represented by the <u>dark grey</u> box in the planning framework (Fig. 2). Here is an overview of what was done according to the step-by-step research process above (<u>light grey</u> box on Fig. 2):

- Define your research question: The overarching research question was centred on finding out if people without a
 background in the geosciences perceive landscapes from game worlds as more realistic compared to those with a
 background in the geosciences. In answering this question, the authors also wanted to investigate if wrongfully
 interpreting game world landscapes as real is a risk when aiming to tangentially communicate geoscientific principles
 through the use of videogames.
- 2. Identify appropriate methods to collect the data to answer the questions: In the initial scoping exercise for this study, it was decided that an initial quantitative-based approach would be appropriate to begin to answer the research question. It was also envisioned that this study might then lead to further qualitative research to help further unpick the findings of this study, i.e., that geoscientists are slightly better (with statistical significance) at differentiating real geological features from those in a game world.
- 3. Ethical approval: This study was carried out according to the British Educational Research Association's (BERA) ethical guidelines for educational research, with all of the data in this study fully anonymised. Furthermore, the survey clearly outlined the purpose of the study, the way in which the data would be used, and provided participants with the opportunity to withdraw from the research at any time.
- 4. Collect data: The data was collected using a survey on Google Forms, through which participants were shown a series of images, some of which were real geophysical features and some of which were from a game world. The participants were asked to mark on an ordinal scale how confident they were in their identification, with the benefit of such ordinal scales being that they can incorporate more nuance than a simple dichotomy. The survey itself was advertised both in person at the European Geoscience Union (EGU) General Assembly 2018 in Vienna and via the Twitter accounts of the authors. While there are limitations to this approach, Côté and Darling (2018) have shown that this is an effective approach for reaching a diverse audience.
- 5. Analyse data: The responses to the survey were analysed using a Student's t-test with Bonferroni correction to account for multiple testing. Furthermore, post hoc analyses showed no significant over-representation of gamers among geoscientists. The specific use of this analysis was discussed very early on in the design of the study, and the survey was designed with this in mind.
 - 6. Write paper: From the outset this study had been designed with publication in GC in mind, and so the authors were able to be guided throughout each of the preceding stages by the Editorial of Illingworth et al (2018). This helped to ensure that there was a well-designed 'fit', which in turn made preparation for publication more straight forward.

295

300

305

315

320

310

6.3 Example 3

325

340

An example of a paper that is based on, and benefited from reaching out during project planning and by interdisciplinary collaboration is Hillier *et al* (2019b). The authors were motivated to understand exactly how an individual geoscientist's workload (i.e. specified tasks) and incentive structures (i.e. assessment criteria) may act as a key barrier to university–business collaborations, with a focus on natural hazard risk modelling in the insurance sector.

The work was originally conceived by Hillier with a simple, pragmatic aim of creating a 'user guide' to help initiate and nurture a long-term collaboration between an early- to mid-career environmental scientist and a practitioner in the insurance sector. Hillier, however, realised that this output could be more powerful and broadly applicable if grounded in a body of published theory and practice rather than a mainly anecdotal report of the views of his close contacts in the insurance sector. As primarily a geoscientist, Hillier sought initial advice on what might make the work publishable from the *Geoscience Communications* editorial team, then reached out across specialisms (knowledge exchange experts, social scientists, and

335 Here is an overview of what they did in relation to the step-by-step research process above (light grey box on Figure 2):

insurance practitioners). What emerged is a robust mixed-methods piece of curiosity-led research.

- Define your research question(s): The study was framed by two broad questions: what motivates academics to do
 specific work, and reciprocally, what might constrain them? Specifically, this work adds novel insight into why
 motivations arise and how exactly time constraints manifest themselves in behaviours in the presence of impact
 requirements. The constraint focussed upon was the time available in an academic geoscientist's working week as
 understood through their duties and responsibilities. The motivation focussed upon was the appraisal and promotion
 structure of universities and the importance of 'impact' (e.g. knowledge exchange or geoscience communication)
 within this.
- 2. Identify appropriate methods to collect the data to answer the questions: A mixed-methods approach was used, based upon freely available textual data. Job specifications and promotion criteria from UK universities provided data on the tasks required, setting the time constraint, while promotion and therefore its requirements were presumed to be a motivation. To augment this, a workshop interpreting and collecting views on these data was conducted and, further opinions incorporated by co-writing the paper with 22 interested academics and practitioners. So, overall, the approach draws on ideas of reflexivity and action research.
- Ethical approval: The study was approved by Loughborough University's departmental ethics coordinator. All data were anonymous.
 - 4. **Collect data:** Textual data were collected during a desk-based analysis, supplemented by a workshop of 27 participants and, in a novel twist, through comments during co-writing the paper with 22 interested co-authors.
 - 11

- 5. Analyze the data: In order to identify key aspects of the data three relatively simple qualitative techniques were used: (i) word clouds, (ii) thematic analysis, and (iii) interpretation of participants' comments. No sophisticated methods were used to interpret comments if they were unclear, clarification was simply sought during the writing process (coauthors) or semi-structured interviews (other participants).
 - Write your paper: Hillier and colleagues wrote up the paper, and with a breadth of authors it was written to be intelligible to all of them – geoscientists, social scientists, and insurance practitioners.

360 7 Reaching out & project planning

355

365

Reaching out to science communication researchers or social scientists is a good way to engage in high-quality and publishable geoscience communication (Illingworth, 2017). As an example, Priestley et al (2019) analysed the content of reflective blogs and a series of surveys completed by learners engaged in an online course about Antarctic geology and history. The main engagement activity (the online course) was led by a science historian and a geologist, but co-authors with expertise in geoscience education and psychology were invited to do the thematic analysis and contribute to the publication.

You can assess your need for involving outside expertise on a three-fold basis: your <u>existing team's experience</u>, the <u>demands</u> <u>arising from the</u> interdisciplinarity of the project, and the stakes (i.e. risk level associated with a mistake either in the project design or the miscommunication of any results). This is illustrated in Fig. 3 where we plot the interdisciplinarity of a project

370 against the stakes at play. The placement of the different bands is arbitrary and can change with the experience you might have in interdisciplinarity or with working with particular topics or issues. Where one places a project on Fig. 3 will depend on one's own values, experience, and skill sets.

In the case of <u>a</u> simple survey, if you have never conducted one before then you will likely benefit from at least consulting with someone with survey design and ethics expertise. If you are an experienced geoscience communicator, and the nature of the research question is relatively simple (e.g. 'Did it work?'), you might consider proceeding by yourself or with geoscience colleagues. However, for more interdisciplinary projects, i.e. those with a complex theoretical basis, or where the consequence of misinterpretation is high (e.g. where there is <u>a</u> direct feed into policy, or where there are focuses on important ethical or societal issues), you may need a collaborator with experience in social science methodologies and/or publishing in the field of science communication. Moving up the scales, it is critical you should seek interdisciplinary and even intercultural input if you wish to interact with vulnerable individuals (e.g. children) or groups from substantially different cultural backgrounds to your own, as outlined in the next section.

In our first case study (Archer et al., 2021a), the communication activity had low stakes. On the other hand, the use of audial data and the audience of young families made the project rather interdisciplinary. However, the authors had experience in all Commented [JH18]: RC1.19

Commented [JH19]: RC1.20

these fields, so a mark to represent the project might therefore be placed at the lower end of both axes on Fig. 3. For the second case study (Hut el al., 2019), the authors felt they needed input from a statistical and digital visualization specialist. The project also had low stakes but would likely appear higher on the interdisciplinary scale in Fig. 3. The final case study (Hillier et al, 2019) had much higher stakes since it dealt with issues which were policy relevant. The subject spanned science and industry

390 and the project used a range of research methods. So, the project could be placed quite high on both the stakes and interdisciplinary axes on Fig. 3, clearly indicating a benefit to collaborating with experts from other fields even though the lead author (Hillier) has worked both as an academic and in the insurance sector.

Even if your project is considered to have relatively low stakes or not particularly interdisciplinary, you should still consider collaborating with others outside of your immediate field. Collaborations like these can sometimes be challenging, but they are almost always positive and educational for all involved. <u>Specifically, the act of collaborating with different disciplines</u> might make you more skilled in new areas and thus able to publish on communication activities with less assistance in the <u>future</u>.

8 List of possible techniques

- 400 An intention of GC is that all research articles should include qualitative and/or quantitative evidence, and not solely anecdotal reporting (Illingworth et al., 2018). Quantitative evaluation, such as answers on a 1-to-5 (i.e. Likert) scale in a questionnaire, are a readily understood and deployed tool (if there are enough people involved), but qualitative evaluation can also be very powerful. This section is intended as a gateway; an illustration of the range of the toolkit that exists for data collection and analysis, providing links to other literature where such methods have been used in relation to the geosciences.
- 405

It is not easy to prescribe what a robust dataset looks like because, like in physical science, this depends on the quality of the data and nature of the research problem; there is a place for both qualitative and quantitative research methods which is largely dependent on the nature of the activity, as well as the theoretical perspectives of the researchers. For example, quantitative evaluations are often suitable for evaluating certain activities as they can reach large numbers of participants quickly and

410 easily. However, if there are too few participants (e.g., n=12), the observations might not be demonstrated to be statistically robust. However, in other instances, qualitative research is more appropriate (for example, asking participants to reflect on a longer-term intervention) and a sample of 12 substantive interviews could be an appropriate sample number. Often, a blend of methods yields more reliable results.

8.1 Methods for data collection

415 In order to establish which data collection tools geoscience communicators use in their published research, we have reviewed those that occur in the existing research articles in GC. This exercise demonstrates that pre- and post- surveys to measure

13

Commented [JH20]: RC1.21

Commented [JH21]: RC1.22

change or assess participant perception before and after an intervention, communication, outreach, or educational activity were amongst the most popular methods used to collect data. Researchers used a range of question types to create these surveys, for example Likert scales (e.g. Hut et al., 2019); multiple choice (e.g. Noone et al., 2019) and in some cases, open-ended questions

420 to capture the authenticity, richness, depth of response, honesty and candour of the respondent (e.g. Cohen et al., 2013, p. 225; Cumiskey et al., 2019). Yet beyond this, innovations such as pre- and post- graffiti walls (e.g. Archer et al., 2021a) were utilised where surveys (for example) were found not to be suitable for the activity.

Perhaps the most familiar data collection tool used by geoscientists is that of field notes. Typically, they are used to record observations as evidence to reflect upon with the purpose of achieving a greater understanding of a phenomenon. Field notes and observations are also utilised by those within geoscience communication research (Illingworth et al., 2018) as a data collection tool. Collections of case studies and vignettes (e.g. Van Loon et al., 2020) are also used to elicit data from participants in the research.

- 430 Other familiar data collection tools such as interviews (e.g. Vicari et al., 2019; Budimir et al., 2020) and focus groups (e.g. Neumann et al., 2018) are used to elicit rich, qualitative data with interviews being more suitable for instances where individual, and more in-depth responses are required and focus groups typically preferable for discussions and gathering a range of viewpoints. Depending on the demographic of participants, for example schoolchildren, it may be more appropriate to use methods such as storytelling (e.g. Davis, 2007; Lanza et al., 2014) or drawings (e.g. Özsoy, 2012).
- 435

Authors within *GC* also used secondary or existing data sources of geoscience communication to conduct systematic reviews (e.g. Loroño-Leturiondo et al., 2019) or else used media reports (e.g. Vicari et al., 2019), social media (e.g. Lacassin et al., 2020), and videogames (e.g. McGowan and Scarlett, 2020) and then went on to analyse data from these sources using new analytical approaches. Of course, depending on the requirements and nature of the research, sometimes, a mixed-methods

440 approach is the most appropriate (e.g. Hillier et al. 2019).

8.2 Methods for data analysis

Similarly to data collection tools, the analytical techniques used by scholars of geoscience communication, are both quantitative and qualitative in approach. Statistical analyses of questionnaire data (e.g. Stephens et al., 2019; Casado et al., 2020) are often used to quantify the size and significance of any changes, perhaps pre- and post- an event or intervention, in order to evaluate and quantify whether a_communication activity was effective. Statistical analysis can also be used as a tool to explore the analytics offered by social media channels (e.g. Knudsen and Bolsée, 2019; Skinner, 2020); for example, comments on or the number of views/likes of a communication on a YouTube channel could be considered to be a proxy for engagement. Other quantitative approaches could include network analysis (e.g. Narock et al., 2019) from which complex patterns in data can emerge.

14

Commented [JH22]: RC1.23

Commented [JH23]: RC1.25

Commented [JH24]: RC1.26

450

Textual analysis, in some format, is often the preferred method of qualitative analysis. Whether through thematic analysis (e.g. Illingworth, 2020b), descriptive coding (e.g. Loroño-Leturiondo et al., 2019) or the analysis of text within secondary data (e.g. Lacassin et al., 2020), these approaches can offer insight and highlight patterns and themes within the written data. Illustratively, quantifying the number of times a theme is alluded to within the text, can be a useful method of pattern initiatives (e.g. Archer and DeWitt, 2021). Some authors have also used self-reflection of their public engagement initiatives (e.g. Beggan and Marple, 2018) to evaluate an event, outreach, or communication. For example, you might consider adopting a formal method of reflection (see e.g. Gibbs, 1988; Kolb, 2015) and use this to contextualise your own experiences with that of any feedback that was collated from other researchers and/or participants. Similarly, you might adopt an autoethnographic approach, such as that demonstrated by Reano (2020), in which they engaged in critical reflections of their own practice and lived experiences to reveal how indigenous research frameworks may enhance the geosciences in higher education.

It is clear that, in the same way geoscience researchers make use of a wide range of data collection and analytical techniques, so to do geoscience communication researchers. The nature of the research will largely determine the methods and techniques that are most suitable and appropriate for your research, and should be chosen so as to be congruent with your research methodology.

9 Ethics

The first editorial in GC (Illingworth et al., 2018, p.4) highlights ethics as a requirement of good practice, stating:

- 470 All research articles should include an explicitly marked section that considers the ethics of the investigation and should also demonstrate how the research has received ethical clearance from their research institute or professional body.
- When collecting data by talking to or eliciting information from 'human subjects', it is important to consider the ethics of the research and seek (sometimes required) ethical approval before starting data collection. Often a streamlined procedure is in place at research institutions, the key role of which is to ensure that participants are not being exposed to unnecessary risks as a result of participating in the research (Guillemin and Gillam, 2004). This is, consequently, a safety net protecting authors without them needing to be an expert in ethics.
- 480 In Higher Education Institutions, a board or committee dealing with ethics should also exist. Its name will vary between institutions and countries, but its purpose is the same; to review your research proposal to ensure that you have considered and

15

Commented [JH25]: Check - This reference disappeared during file conversion last time.

Commented [JH26]: RC1.27 - Change requested by Archer.

Commented [JH27]: RC1.3 - further detail added.

suitably mitigated for a range of ethical scenarios that could arise as a result of your research. This ethics board may place conditions upon its approval, or reject your proposal if they feel it is too ethically challenging (Healey et al., 2013). If institutional approval is not possible, then the ethical guidelines for a country or governing body should be followed (Illingworth et al., 2018). An example of this is the British Educational Research Association (BERA), which provides ethical guidelines for educational research (see e.g. Flewitt, 2005).

Ethical guidelines in social science research are frequently adopted from the biomedical research community (Tiidenberg, 2020) and typically focus on ensuring dignity, justice, and privacy for the research participants (Eynon et al., 2008; Pittaway et al., 2010) through the processes of "informed consent, confidentiality, and anonymity" (Tiidenberg, 2020: p6) to attempt to

- mitigate any potential harm to the participant as a result of partaking in the research. Though the suitability of this process for social science has drawn some criticism (e.g. Schrag, 2011; Tiidenberg, 2020) the approach is adopted in many countries across the world.
- 495 In detail, researchers are usually required to complete an initial form (e.g. found via their institution) during the ethics approval process. This may prompt them to consider a range of risk factors and offer mitigation strategies, to ensure data will be held securely and to ensure confidentiality will be guaranteed for personal data (e.g. for participants from the EU GDPR regulations must be complied with). Risk factors could include:
- Commented [JH28]: RC2.9

collecting data from participants under the age of 18;

485

505

- psychological or emotional distress as a result of the questions being asked;
- potential for disclosure of current, previous, or proposed antisocial or illegal acts of participants or their associates as a result of the questions being asked;
- · potential for discussion of personal/sensitive matters that could be harmful to themselves or others; and
- cultural differences between the researcher and participant that may risk creating misunderstanding or causing
 offence. For example, it is important that researchers consult carefully with indigenous communities concerning
 the correct protocols and practices that should be observed during any research that involves them.

Along with the ethics application, researchers are required to submit their data collection tools (e.g. questionnaire or interview 510 questions), 'participation information sheets' (or equivalent) and consent forms for review. Participation information sheets are required to provide potential participants information about why they have been contacted, what will happen if they take part, whether participation is voluntary, how long the survey/interview (for example) might take, if and how they can withdraw their data, the potential benefits and risks of taking part in the research, how their data will be stored, how confidentiality will be maintained, and what will happen to the data they have provided. Essentially, this is to ensure they can make an informed 515 decision about whether to participate in the research nor not, i.e. that 'informed consent' has been obtained by the researchers.

Typically, researchers are now also required to ensure that the data provided to them by participants will be stored securely i.e. using password protection, encrypted files, and/or locked filing cabinets. New data protection rules, the General Data Protection Regulation (GDPR), were brought in during 2018 to protect the data of residents of the European Union countries;

- 520 therefore if you are collecting personal data from residents of the EU, you must have a legal basis for doing so. For research, the legal basis is 'processing in the public interest' and researchers must ensure a privacy notice about how the data will be gathered, stored, and reported is included at the start of the research, typically in the participant information sheet.
- Once potential participants have read the participant information sheet, they can then make an informed decision about whether to participate in the research or not. If they agree, participants are required to sign a consent form which asks them to confirm certain aspects before proceeding. Such a form might ask a participant the following questions:
 - (i) that they have read the participation information sheet and had an opportunity to ask questions about the research;
 - (ii) that they understand participation is voluntary;
 - (iii) that their responses will be anonymous; and
- 530 (iv) that they are willing for their interview to be recorded (if required by the researcher).

To those unfamiliar with the ethical process, it can, at first, appear arduous. However, it is a necessary process designed to reduce harm to your potential participants and to ensure you, as a researcher, have considered as many possibilities that could arise as possible. Guidance and templates are usually offered by the ethics board and rather than being a barrier or delay to the research, the boards should be viewed as supportive and facilitative to the research if ethically possible. As discussed in Section 7, collaborating with others who are more experienced in these processes is also recommended.

10 Widely accessible communication of your research

After data collection and analysis to obtain results, it is time to communicate your research to a wider public of interested parties (e.g. industry, policymakers, researchers from other disciplines). How to best communicate complex findings to the wider public sphere is a key challenge for scientists (e.g. Illingworth et al., 2018), and this is of particular interest to a journal of science communication like *GC*. Even to a highly educated and scientifically literate public (e.g. the reinsurance sector), the onus largely remains on you as the researcher to make your paper accessible. Success in this is highly dependent upon the language you use.

- 545 There is an age-old debate on the use of plain language in scientific journals, with at least some consensus on the utility of plain language summaries to accompany papers (Bredbenner and Simon, 2019; Hauck, 2019). Even if occasional jargon is the only way you see to effectively communicate within your field of expertise, you should consider whether it can be eliminated
 - 17

for a journal such as GC, where it is potentially problematic for the target audience. Like other similar journals, the word 'communication' implies interdisciplinary research, including topics such as science engagement and dialogue, science policy,

550 and education, with GC also including recent fields such as science-art collaborations. The readership of such a journal potentially includes a wide variety of backgrounds, who are unlikely to know each other's jargon. If the use of jargon is considered unavoidable, you could explain the terms in the text, but you should note that the presence of jargon (pejoratively 'scientific language') has been shown to interfere with readers' ability to fluently process scientific information, even when definitions of these terms are provided, which in turn affects their interest in and understanding of the science (Shulman et al., 555 2020).

The appropriate use of tables, figures, and video can also assist clear communication. Well-presented tables and figures can help summarize the salient points of your work, making them accessible to different types of users. This could range from annotated photographs (Fig. 1b of Lancaster, 2020) to the vast array of geovisualization techniques available including animations and interactive software tools for data exploration (e.g. Smith et al., 2013). Animation and cartoon summaries can also be used to good effect (Hillier et al., 2019c, a). *GC* also supports the use of graphical and video abstracts, which can be used to help reach a wider and more diverse audience. <u>A journal article provides a respected basis for onward dissemination</u> via blog posts, posts on social media and other channels.

Commented [JH29]: RC2.10

11 Take home messages

- 565 Effective geoscience communication is a skill to be learnt, developed, and shared. To be able to improve it as a community, we need a way to share our experiences of effective and ineffective geoscience communication and one way to do this is through research and publications. We offer the following basic framework as a guide to creating research publications that can be published in *GC*:
- 570

- Develop your approach before acting. If you can name the tools or method(s) you intend to use for data collection and analysis then this is a good sign.
 - 2. Work out what you're trying to achieve.
 - 3. Work out who is your audience is (i.e. who is experiencing or accessing the geoscience).
 - 4. Before doing any research make sure that you have ethical approval.
- By framing and testing a hypothesis, approach geoscience communication in the same way you would approach other geoscientific research! This is what makes work publishable.
 - Ask for advice and support if you are unsure whether from colleagues experienced in social science methods, your institutions (e.g. ethics board), or the editors of GC.
 - 18

 Use appropriate, jargon-free language, with a combination of tables, graphics, animations, and videos for clear communication.

Good luck! And, if you wish to going further and deeper into the theory and practice of geoscience communication please note that much literature and many frameworks exist (e.g. Cooke et al., 2017; Illingworth, 2017; Salmon and Roop, 2019), which we do not attempt to detail here as this paper is meant as a gateway, and not a complete guide.

585

580

Acknowledgements

We thank Chris King for his input during developing and writing this paper.

References

Archer, M. O.: Schools of all backgrounds can do physics research – on the accessibility and equity of the Physics Research in School Environments (PRiSE) approach to independent research projects, 4, 189–208, https://doi.org/10.5194/gc-4-189-2021, 2021.

Archer, M. O. and DeWitt, J.: "Thanks for helping me find my enthusiasm for physics": the lasting impacts "research in schools" projects can have on students, teachers, and schools, 4, 169–188, https://doi.org/10.5194/gc-4-169-2021, 2021.

Archer, M. O., Day, N., and Barnes, S.: Demonstrating change from a drop-in space soundscape exhibit by using graffiti walls 595 both before and after, 4, 57–67, https://doi.org/10.5194/gc-4-57-2021, 2021a.

Archer, M. O., DeWitt, J., Thornley, C., and Keenan, O.: Evaluating participants' experience of extended interaction with cutting-edge physics research through the PRiSE 'research in schools' programme, 2021b.

Balmer, D.: he value of short Earth science continuing professional development for trainee primary school teachers, 4, 33–41, https://doi.org/10.5194/gc-4-33-2021, 2021.

600 Beggan, C. D. and Marple, S. R.: Building a Raspberry Pi school magnetometer network in the UK, 1, 25–34, 2018.

BERA: Ethical Guidelines for Educational Research, fourth edition, British Educational Research Association, 2018.

Bredbenner, K. and Simon, S. M.: Video abstracts and plain language summaries are more effective than graphical abstracts and published abstracts, 14, e0224697, https://doi.org/10.1371/journal.pone.0224697, 2019.

Bucchi, M. and Trench, B.: Handbook of public communication of science and technology, Routledge, Abingdon, UK, 2008.

605 Budimir, M., Donovan, A., Brown, S., Shakya, P., Gautam, D., Upret, M., and Dugar, S.: Communicating complex forecasts: an analysis of the approach in Nepal's flood early warning system, 3, 49–70, 2020.

Casado, M., Gremion, G., Rosenbaum, P., Caccavo, J. A., Aho, K., Champollion, N., and Fugmann, G.: The benefits to climate science of including early-career scientists as reviewers, 3, 89–97, 2020.

Cheng, D., Claessens, M., Gascoigne, T., Metcalfe, J., Schiele, B., and Shi, S.: Communicating Science in Social Contexts, 610 Springer, 2008.

Cohen, L., Manion, L., and Morrison, K.: Research Methods in Education, Routledge, pp 784 pp., 2013.

Cooke, S. J., Gallagher, A. J., Sopinka, N. M., Nguyen, V. M., Skubel, R. A., Hammerschlag, N., Boon, S., Young, N., and Danylchuk, A. J.: Considerations for effective science communication, 2, 233–248, https://doi.org/10.1139/facets-2016-0055, 2017.

615 Côté, I. M. and Darling, E. S.: Scientists on Twitter: Preaching to the choir or singing from the rooftops?, 3, https://doi.org/10.1139/facets-2018-0002, 2018.

Cumiskey, L., Lickiss, M., Šakić Trogrlić, R., and Ali, J.: Interdisciplinary pressure cooker: environmental risk communication skills for the next generation, 2, 173–186, 2019.

Curious Minds: \$2 million for STEM projects that unlock our nations' minds, 2019.

620 Curious Minds: Unlocking Curious Minds Contestable Fund - Call for Proposals, 2020.

Davis, P.: Storytelling as a democratic approach to data collection: Interviewing children about reading, 49, 169-184, 2007.

Deves, M. H., Le Texier, M., Pecout, H., and Grasland, C.: Seismic risk: the biases of earthquake media coverage, 2, 125–141, 2019.

EC: HORIZON 2020 - WORK PROGRAMME 2018-2020: General Annexes; H - Evaluation rules, 2018.

625 Eynon, R., Fry, J., and Schroeder, R.: in: The ethics of internet research, Sage, 23-41, 2008.

Flewitt, R.: Conducting research with young children: Some ethical considerations, 176, 553-565, 2005.

Gibbs, G.: Learning by doing: A guide to teaching and learning methods, Oxford Polytechnic Further Education Unit, Oxford, 1988.

Guillemin, M. and Gillam, L.: Ethics, reflexivity, and "ethically important moments" in research, 10, 261-280, 2004.

630 Hauck, S. A.: Sharing planetary science in plain language, 124, 2462–2464, https://doi.org/10.1029/2019JE006152, 2019.

Healey, R. L., Bass, T., Caulfield, J., Hoffman, A., McGinn, M. K., Miller-Young, J., and Haigh, M.: Being ethically minded: Practising the scholarship of teaching and learning in an ethical manner, 1, 23–32, 2013.

Hillier, J. K., Kler, G., and Tweddle, J.: Demystifying academics to enhance university-business collaboration, https://doi.org/10.17028/rd.lboro.8283350.v2, 2019a.

635 Hillier, J. K., Saville, G., Smith, M. J., Scott, A. J., Raven, E. K., Gascoigne, J., Slater, L., Quinn, N., Tsanakas, A., Souch, C., Leckebusch, G. C., Macdonald, N., Loxton, J., Wilebore, R., Collins, A., MacKechnie, C., Tweddle, J., Milner, A. M., Moller, S. Dove, M., Langford, H., and Craig, J.: Demystifying academics to enhance university-business collaborations in environmental science, 2, 1–23, https://doi.org/10.5194/gc-2-1-2019, 2019b.

Hillier, J. K., Foote, M., Tsanakas, A., Wardman, J., Mitchell-Wallace, K., Hughes, R., Dixon, R., Simeononva, B., and Brown, 640 C.: Investing in science for natural hazards insurance, https://doi.org/10.17028/rd.lboro.c.4322666, 2019c.

Hut, R., Albers, C., Illingworth, S., and Skinner, C.: Taking a Breath of the Wild: are geoscientists more effective than nongeoscientists in determining whether video game world landscapes are realistic?, 2, 117–124, https://doi.org/10.5194/gc-2-117-2019, 2019.

Illingworth, S.: Delivering effective science communication: advice from a professional science communicator, 70, 10–16, https://doi.org/10.1016/j.semcdb.2017.04.002, 2017.

Illingworth, S.: Creative communication – using poetry and games to generate dialogue between scientists and nonscientists, 594, 2333–2338, https://doi.org/10.1002/1873-3468.13891, 2020a.

Illingworth, S.: "This bookmark gauges the depths of the human": how poetry can help to personalise climate change, 3, 35-47, 2020b.

650 Illingworth, S. and Allen, G.: Effective science communication, 2nd ed., Institute of Physics Publishing, Bristol, 2020.

Illingworth, S., Stewart, I., Tennant, J., and von Elverfeldt, K.: Editorial: Geoscience Communication – Building bridges, not walls, 1, 1–7, https://doi.org/10.5194/gc-1-1-2018, 2018.

Knudsen, E. M. and Bolsée, O. J. D.: Communicating climate change in a "post-factual" society: lessons learned from the Pole to Paris campaign, 2, 83–93, 2019.

655 Kolb, D. A.: Experiential learning: Experience as the source of learning and development, 2nd ed., Pearson Education Inc., Upper Saddle River, 2015.

Lacassin, R., Devès, M., Hicks, S. P., Ampuero, J. P., Bossu, R., Bruhat, L., and Valkaniotis, S.: Rapid collaborative knowledge building via Twitter after significant geohazard events, 3, 129–146, 2020.

Lancaster, S. A.: Boundary|Time|Surface: assessing a meeting of art and geology through an ephemeral sculptural work, 3, 249–262, https://doi.org/10.5194/gc-3-249-2020, 2020.

Lanza, T., Crescimbene, M., La Longa, F., and D' Addezio, G.: Bringing earth into the scene of a primary school: a science theatre experience, 36, 131–139, 2014.

Locritani, M., Merlino, S., Garvani, S., and Di Laura, F.: Fun educational and artistic teaching tools for science outreach, 3, 179–190, https://doi.org/10.5194/gc-3-179-2020, 2020.

665 Loroño-Leturiondo, M., O'Hare, P., Cook, S. J., Hoon, S. R., and Illingworth, S.: Building bridges between experts and the public: a comparison of two-way communication formats for flooding and air pollution risk, 2, 39–53, 2019.

McGowan, E. G. and Scarlett, J. P.: Volcanoes in video games: The portrayal of volcanoes in Commercial-Off-The-Shelf (COTS) video games and their learning potential, 1–18, 2020.

Narock, T., Hasnain, S., and Stephan, R.: Identifying and improving AGU collaborations using network analysis and scientometrics, 2, 55–67, 2019.

Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S., Theofanidi, S., and Cloke, H. L.: Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity, 1, 35–57, 2018.

Noone, S., Brody, A., Brown, S., Cantwell, N., Coleman, M., Sarsfield Collins, L., and Thorne, P.: Geo-locate project: a novel approach to resolving meteorological station location issues with the assistance of undergraduate students, 2, 157–171, 2019.

675 NSF: Perspectives on Broader Impacts, 2014.

Özsoy, S.: Is the Earth flat or round? Primary school children's understandings of the planet earth: The case of Turkish children, 4, 407–415, 2012.

Pittaway, E., Bartolomei, L., and Hugman, R.: 'Stop stealing our stories': The ethics of research with vulnerable groups, 2, 229-251, 2010.

680 Priestley, R. K., Dohaney, J., Atkins, C., Salmon, R., and Robinson, K.: Engaging new Antarctic learners and ambassadors through flexible learning, open education and immersive video lectures, 55, 274–288, 2019.

Ramirez-Gonzalez, I. A., Añel, J. A., and Samamed, A. C.: Ozone measurement practice in the laboratory using Schönbein's method, 3, 99–108, https://doi.org/10.5194/gc-3-99-2020, 2020.

Reano, D.: Using Indigenous Research Frameworks in the Multiple Contexts of Research, Teaching, Mentoring, and Leading, 25, 3902–3926, 2020.

Reed, M.: How to write a Horizon 2020 proposal that impresses on impact, Fast Track Impact: Impact Guides, 2020.

Reed, M. S.: The research impact handbook, 2nd ed., 2018.

Salmon, R. A. and Roop, H. A.: Bridging the gap between science communication practice and theory: Reflecting on a decade of practitioner experience using polar outreach case studies to develop a new framework for public engagement design, 55, 297–310, https://doi.org/10.1017/ S0032247418000608, 2019.

Salmon, R. A., Priestley, R. K., and Govern, J.: The reflexive scientist: an approach to transforming publicengagement, 7, 53–68, https://doi.org/10.1007/s13412-015-0274-4, 2017.

Schrag, Z. M.: The case against ethics review in the social sciences, 7, 120-131, 2011.

Shulman, H. C., Dixon, G. N., Bullock, O. M., and Colón Amill, D.: The effects of Jargon on processing fluency, selfperceptions, and scientific engagement, https://doi.org/10.1177/0261927X20902177, 2020.

Signoretta, P., Chamberlain, M. C., and Hillier, J. K.: 'A Picture Is Worth 10,000 Words': A Module to Test the 'Visualization Hypothesis' in Quantitative Methods Teaching, 6, 90–104, https://doi.org/10.11120/elss.2014.0029, 2014.

Skinner, C.: Flash Flood!: a SeriousGeoGames activity combining science festivals, video games, and virtual reality with research data for communicating flood risk and geomorphology, 3, 1–17, https://doi.org/10.5194/gc-3-1-2020, 2020.

700 Smith, M. S., Hillier, J. K., Otto, J.-C., and Geilhausen, M.: Geovisualisation, in: Treatise on Geomorphology (vol. 3), edited by: Schroder, J. F. and Bishop, M., San Diego, Academic Press., 299–325, https://doi.org/10.1016/B978-0-12-374739-6.00054-3, 2013.

Stephens, E. M., Spiegelhalter, D. J., Mylne, K., and Harrison, M.: The Met Office Weather Game: investigating how different methods for presenting probabilistic weather forecasts influence decision-making, 2, 101–116, 2019.

705 Tiidenberg, K.: Research ethics, vulnerability, and trust on the internet, in: Second International Handbook of Internet Research, 569–583, 2020.

UKRI: Industrial Strategy Challenge Fund: for research and innovation, 2017.

UKRI: Global Challenges Research Fund, 2018.

Van Loon, A. F., Lester-Moseley, I., Rohse, M., Jones, P., and Day, R.: Creative practice as a tool to build resilience to natural hazards in the Global South, 3, 453–474, https://doi.org/10.5194/gc-3-453-2020, 2020.

Venhuizen, G. J., Hut, R., Albers, C., Stoof, C. R., and Smeets, I.: Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience, 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, 2019.

Vicari, R., Tchiguirinskaia, I., and Schertzer, D.: Assessing the impact of outreach strategies in cities coping with climate risks, 715 2, 25–38, 2019.

Figure 1: A conceptual model of two plausible, end-member approaches to research associated with geoscience communication activities. An integrated approach b) is encouraged, but not obligatory in *Geoscience Communication*, and we stress that evaluation of an activity is not the only type of research that is possible. Commented [JH30]: RC1.28

Figure 2: Aplanning framework for geoscience communication activities, emphasising the presence of the research that makes work publishable (light grey) within the wider planning framework that makes it useful and impactful. More or less time, weight, or emphasis may be placed on either side, depending upon the authors' resources and motivations, but an integrated approach is encouraged if possible in *Geoscience Communication*. [Section X] annotations in grey indicate relevant sections of this editorial (below).

Commented [JH31]: Changes in light of CC1.4 and RC1.29

Interdisciplinarity

Figure 3: A typplogy of project interdisciplinarity (i.e complexity) and stakes (i.e. risk) linked to a zonation of recommendations of 730 when it might be necessary to engage with those outside your geoscience discipline (e.g. social scientists, artists, decision-makers, local communities and so on). Stakes increasing up the y-axis refers to risk of the likelihood and magnitude of a consequence should some error be made increases upwards. On the x-axis, interdisciplinarity increases to the right, and relates to the number of skillsets required for the project to be a success. The bands in the figure can move according to the researcher expertise in different disciplines or different issues. Commented [JH32]: Dots removed - CC1.6, RC1.12