

1 **25 years of seismology at school in France**

2
3 Jean-Luc Berenguer^{1*}, Julien Balestra¹, Fabrice Jouffray¹, Fabrice Mourau², Françoise
4 Courboulex¹, and Jean Virieux³

5 ¹ Université Côte d'Azur, CNRS, IRD, Observatoire de la Côte d'Azur, Géoazur, Valbonne,
6 France

7 ² Pierre de Coubertin School, Le Luc en Provence, France

8 ³ Université Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France

9
10 ***Correspondence:**

11 Jean-Luc BERENGUER

12 jean-luc.berenguer@univ-cotedazur.fr

13 **Keywords: education, seismology, hazard, school, teaching, database**

14 **Abstract (257 words)**

15
16 An educational programme focusing on seismological activities for school and university
17 students training in observational sciences and on raising citizen awareness of natural hazards
18 has been active in France since 1995. Over this quarter century, different generations of students
19 have learnt various lessons concerning instrument installation, data recording and analysis.
20 These actions have led them into the field of scientific interrogation and interpretation, making
21 them better prepared for our modern technological societies. We describe these student
22 commitments motivated by the installation of the first educational broadband seismometer in
23 southern France. Analysis of regional earthquakes has generated a greater awareness of the
24 seismic hazard where students live, while records of strong earthquakes all around the world
25 have induced interaction between students, especially after the deployment of additional
26 seismometers in schools. The natural extension of such an educational seismic network, first at
27 the national level in France in 2006 and later in many countries through various collaborations,
28 has enriched the pedagogical practices of teachers, increasing their skills in seismology and
29 natural sciences among various other disciplines, complementing standard educational
30 resources. We describe the necessary and sustainable relations between teachers and researchers
31 over time. Combining students' motivation, teachers' experience and researchers' expertise has
32 led to different hosting structures over the years. We conclude by presenting the feedback from

33 a survey carried out in 2019 among all the teachers involved, highlighting the strong and weak
34 points of such a long-term adventure. Recent integration into the official syllabus of the new
35 Geosciences high-school curricula in France illustrates the impact of such an exceptional
36 experience.

37

38 **Introduction**

39

40 Earthquakes occur suddenly and cause severe damage to the infrastructures of our modern
41 societies, leading to high numbers of casualties. These events are unavoidable but their impact
42 can be significantly mitigated. They remain unpredictable with our current scientific
43 knowledge. Moreover, although they are both worrying and fascinating, to us.

44 This is why emphasis must be placed on awareness, especially in the school system where the
45 causes and effects of these hazards are studied. The idea of an educational seismic network
46 arose in the United States with the Princeton Earth Physics Project proposed by Pr. G. Nolet
47 and Pr. B. Phinney in 1993 (PEPP, Steinberg et al., 2000). Pursuing the same objective, an
48 educational seismic network was initiated in France in 1995 and is still active after twenty-five
49 years.

50 Today, many other educational seismic networks exist around the world, including the United
51 States, Great Britain, Greece, Portugal, Australia, Nepal, Taiwan, Haiti and more, providing an
52 indication of the importance and need for distributing seismic sensors to schools for educational
53 purposes. The installation of seismometers in schools promotes learning based on original
54 records. Such learning makes students familiar with scientific data. With acquired experience,
55 students can download other data from environmental agencies for their own investigations.
56 The programme also provides collaboration between teachers and researchers to better collect
57 and analyze the seismic data. Such interaction allows teachers to develop teaching material in
58 class. Moreover, this teaching material is provided on a website to other educators within the
59 same discipline. It has been observed that these online resources have been used by a broader
60 community of teachers in many fields, including natural sciences, history, geography and social
61 sciences.

62 Through this unique, long-term experience, this paper contributes to answering the following
63 questions. How and why has the French educational system evolved over time and benefited
64 from the deployment of a dedicated seismic network? Why is collecting scientific data inside a
65 school important for both teachers and students? How have motivated teachers been able to
66 expand online educational exercises to study their own data as well as the data that has become

67 increasingly available on the web? How have such original educational resources been shared
68 with other teachers across school and national boundaries? What skills and supports are needed
69 to maintain an active educational network? Why can we not rely only on the open datasets
70 available on the web? How has such an experience impacted French teaching programmes?

71

72 **“Sismo des écoles”: the first French school network**

73

74 In 1995, thanks to the PEPP initiative, the design of a dedicated educational seismometer began
75 in France: a broadband 3-component velocimeter associated with a 24-bit high-dynamic
76 digitizer synchronized by GPS with a precision of 1 msec (Fig. 1a). It was installed at the
77 International Campus of Valbonne (CIV, pilot school). This sensor and its control card were
78 monitored via a personal computer and a telephone line. In order to share scientific information
79 between schools, the automatic nightly gathering of time-windowed records of local, regional,
80 and long-distance events, when strong enough, was elaborated from the earthquake catalogs of
81 international agencies. At that time, seismic sensors and related seismograms were more or less
82 an abstraction for the school community. The first active group of 12 high school students was
83 created, meeting weekly to share the analyses of seismograms from the station and related
84 information collected through newspapers. This very committed group was supervised by a
85 teacher in close interaction with a researcher, both involved in this prototype project at the CIV.
86 For the very first time, students had immediate access to global earthquake seismicity from the
87 seismometer within their school. The seismometer and its records provided some concrete
88 aspects to virtual questions related to seismic hazard and to the knowledge of the Earth's
89 structure, which are key scientific topics for French high school educational s. Students and
90 teachers tracked seismic events, such as the Chi Chi earthquake (Fig. 1b), as well as other
91 natural or anthropogenic vibrations (sea swell, human activity, quarry blasts, etc.).

92 In 1996, the French Ministry of Education decided to connect all the schools to the Internet for
93 student training. However, these institutions were very concerned about the added pedagogical
94 value of the Internet in schools. The seismic network thus benefited from this advancement in
95 connectivity: the prototype seismometer was connected to the Internet network. The first online
96 educational seismic database was born. Teachers in other schools were able to work on the
97 online seismic datasets. At the same time, regional political concerns focused on the education
98 of young people about natural hazard awareness in one of the most active seismic zones in
99 France. The prototype station demonstrated that an in-school seismic network to promote
100 educational programme was possible: a first financial grant was given to the “Alpes Maritimes”

101 region. A network of five schools equipped with three-component broadband sensors was set
102 up in the south of France (regional deployment in Fig. 1c, Virieux et al., 2000) and proved to
103 be so successful that the extension to a national configuration was proposed. The organization
104 of such a network was based on voluntary proposals from a team of teachers. The equipment
105 was provided free of charge while maintenance was the responsibility of the volunteer school.
106

107 **An increasing network of teachers specialized in seismology**

108

109 This network, which is constantly increasing, has been supported by different regional and
110 national funds. In 2006, the French national “Sciences à l’École” organization integrated the
111 existing “Sismo des écoles” network into their national educational projects. This cooperation
112 enabled the transformation of local actions into widespread initiatives. The network, renamed
113 “SISMOS à l’École”, was first deployed on a national level, followed by international
114 deployment in the French schools abroad, as illustrated in Figure 1c. This figure shows the role
115 of the professional and educational sensors. See “Data and Resources” for more details. In order
116 to fulfill the educational target of seismic hazard education and scientific approaches, having
117 teachers who are well-trained in seismological skills as an interface between teachers and
118 researchers is mandatory and requires specific workshops. Each school with an installed sensor
119 has an identified researcher (one teacher - one researcher as a mentor). Researchers have
120 comprehensive knowledge of seismic phenomena and teachers have the pedagogical skills to
121 describe these phenomena to students. Researchers have also contributed to the numerous
122 training sessions through scientific refresher lectures. Furthermore, the researchers also use the
123 network’s datasets to integrate them into the seismicity study of the considered areas (Berenguer
124 et al., 2013; their figure 6).

125

126 *Regional, national, and international teachers’ workshops*

127

128 In the last 25 years, different meetings have been offered to any teacher who wants to increase
129 their own skills in seismological topics. In order to maintain significant momentum within the
130 national (and overseas) network, six national meetings have been held since the beginning of
131 the project, with a total of 200 teachers attending at least one of the proposed meetings. These
132 ongoing training sessions thus keep the educational network alive. Topics are related to
133 following items:

134 - scientific conferences presented by scientists and specialized teachers,

135 - practical workshops around datasets from the network,
136 - poster presentations to share experiences in different schools.

137 This format was finally recognized as very useful and helpful for the optimal use of scientific
138 datasets, through the interaction of researchers participating in these teachers' workshops and
139 with the participation of the young students whose awareness has been raised. At a different
140 scale, European teachers' workshops were organized under the umbrella of European research
141 projects, such as the NERA, O3E, and SERA projects (see "Acknowledgements"). These
142 workshops, supported financially by European projects, have provided the opportunity to mix
143 the different cultural styles of educational training one can find among the different European
144 countries.

145

146 *A long-standing production of teaching resources*

147

148 At the early stage of the network, the teachers shared their pedagogical experiences of
149 exploiting in-school seismometers and available datasets on the web. Initial activities focused
150 on the interpretation of dates, travel times and the recognition of seismic waves. With the
151 accumulation of new data combined with their increasing seismological skills, teachers started
152 to produce better-developed activities focusing on different and more complex aspects. The
153 development of digital tools at school has enabled the development of original activities to
154 manipulate numerical quantities. For example, by combining information from seismic catalogs
155 and spreadsheet tools, students are able to display coordinates of listed seismic events on a map
156 and observe that the distribution of each plot enables them to highlight areas which look like
157 tectonic plates. Manipulating these catalogs by themselves enhances their understanding of
158 where and how the information is obtained, which is an added value with respect to push-button
159 applications. An extensive collection of different shared activities was undertaken and finalized
160 through an exercise book: "Le cahier d'activités du SISMO" (the seismo hands-on book,
161 Berenguer et al., 2009, Fig. 2a, see "Data and Resources"). This collection is an illustration of
162 what can be done with the help of seismic data collected in schools. Quite sophisticated
163 scientific topics may be tackled in a simple and pragmatic way during teaching and training.
164 We can cite an example of a practical activity that has become very popular in the classroom.
165 The experiment consists in causing the rupture of a rigid material (polystyrene, uncooked
166 lasagna sheets, hard chocolate, etc.), and recording, with the help of simple piezoelectric cells,
167 the waves that propagate around the rupture (Le cahier d'activités du SISMOS, pp.24-25). More
168 activities are available in the digital version available on line (see "Data and Resources").

169

170 *Successive web platforms to improve sharing*

171

172 All records and activities have also centralized on successive dedicated web platforms for open
173 sharing. At the origin of the project, a web server was hosted by the regional services of the
174 French Ministry of Education. Thus, the records from regional and global seismic activity feed
175 an online database and constitute a seismic resource center for education. Teaching requires a
176 didactic approach to resources. The need for a more sophisticated platform emerged: this is why
177 the web interface of our educational programme goes beyond a simple data center. In 2010, the
178 "www.edusismo.org" website was developed through funds provided by the French ministerial
179 "Sciences à l'École" programme. This website was a cornerstone for providing tools
180 (experiments, software, and simulation) to properly exploit the available datasets as well as
181 many different educational paths. The two first main digital tools used were:

- 182 - SeisGram2K (Lomax A., 2000, see "Data and Resources") software, an interface for
183 the seismological research community and adapted for schools. Students can display
184 seismograms, apply filtering processes, pick wave arrival times, and more;
- 185 - EduCarte geographical information software (see "Data and Resources") which
186 enables users to plot geo-referenced information, work with seismograms, display GPS
187 measurements, create cross sections, and more.

188 Making these datasets didactic through simple and well-developed working steps remains the
189 priority of our programme.

190

191 **New impetus for natural risk prevention with the EduMed Observatory**

192 In 2017, The University Côte d'Azur took over with the programme called Educational
193 Mediterranean Observatory ("EduMed-Obs", <http://edumed.unice.fr>). EduMed-Obs focuses on
194 implementing an interface based on a geoscience dataset concerning the Mediterranean basin.
195 The theme not only focuses on seismology: landslides, meteorology, hydrology, and sea-level
196 variations are also considered. Data mining is developing and has become more important in
197 current teaching programmes (Bigot-Cormier et al., 2017). These datasets are intended not only
198 for middle and high schools, but also for university students. EduMed-Obs also provides
199 datasets from research centers. This aspect is important in strengthening the visibility of the
200 activities of research institutes. It is an excellent opportunity for students to compare datasets
201 from their own sensors with research datasets. Making populations aware, through student

202 training, of the role of earth science observatories is crucial and promotes a better understanding
203 of the seismological (and environmental) nature of the territory where students live. How these
204 observatories participate in our seismic risk awareness is better understood by governmental
205 structures, inducing improved territorial management, such as tsunami mitigation. This new
206 educational observatory already numbers some seventy European schools in the countries
207 around the Mediterranean that host sensors and which implement scientific teaching focused
208 on natural risk education (schools map available at <http://edumed.unice.fr/fr/le-reseau-edumed>). The schools that are twinned within this network can share their experience on natural
209 risks along the Mediterranean coast. EduMed-Obs is a partner of many innovative field camp
210 training courses organized around the Mediterranean, like “InsegnaciEtna 2019” in Sicily
211 (<http://site.ietna.eu>). This expertise is already being exported through initiatives in Central
212 America, where a network is being built on the Caribbean arc from Haiti to Venezuela via the
213 French West Indies (<http://edumed.unice.fr/fr/eduseis>). The recent creation of EduMed-Obs as
214 well as its present and future actions are directly inspired by the feedback from the teachers
215 involved in this project over the past 25 years. Below, we propose a description of the key
216 points mentioned by the teachers over the years.

218 **A look at the past actions of the French educational seismological network**

219
220 Teachers have reported a number of positive points from their experience: students' enthusiasm
221 for recording quakes, the ease of understanding online databases, the development of autonomy,
222 students' responsibility in managing a seismological station, the importance of natural risk
223 within the theme of sustainable development. One of the great strengths of the network has
224 been its integration into teaching programmes, and to fulfill various expected educational
225 objectives:

- 226 - practice a scientific approach;
- 227 - demonstrate observation skills, curiosity, critical thinking;
- 228 - experience autonomy;
- 229 - communicate in scientifically appropriate language: oral, written, graphical, numerical.

230 The installation of seismometers in schools in different areas of Europe and abroad has given
231 the necessary impulse to use a scientific approach for the improved development of activities
232 concerning the knowledge of hazard, the real-time manipulation of information and scientific
233 databases, as well as a better understanding of matters related to risk and territorial management

234 (Courboulex et al., 2012). However, it remains important to evaluate how this has spread
235 scientific culture and risk education to generations of students.

236

237 *The “25 years of the French seismology at school” survey*

238

239 After 25 years, the time had come to make an overview of the teachers' vision of the impact of
240 this network on their teaching and on student training. A survey was conducted in November
241 2019 among all teachers who have participated in the various actions of the programme since
242 its beginning. Note that these teachers are all teachers who are, or who were, the school
243 reference person for the seismometer installed in one of the 105 schools of the network. Several
244 of them are (or were) in charge of teacher training sessions in France and abroad. The number
245 of responses may seem small, but their answers reflect the feeling of many more people.
246 Collecting all feelings, reflections and suggestions accumulated within the different special
247 events carried out by the network should provide critical information for the future evolution
248 of the educational network. Questions (Data Sheet S1) were listed to quantify the impact of the
249 programme on their teaching and on the awareness of science culture and risk education among
250 students. The results presented in Figure 2 are based on the responses of the 73% of the teams
251 to have sent feedback, i.e a total of 250 teachers. In France, Earth science is traditionally taught
252 by biology and geology teachers. They provided the major contribution (85% of the answers)
253 to the survey (compared with the contribution of only 15% of physics teachers). Half of them
254 are teachers who have participated in an educational seismology programme for more than 6
255 years. They consist in equal numbers of middle- and high-school teachers. 80% of them (200
256 teachers) have participated in at least one of the training seminars on seismology and seismic
257 risk described above. The main objective of the survey concerns the pedagogical value of
258 installing a seismometer in a school. What is the greatest contribution of such instrument in a
259 classroom? The following interests are listed in descending order. The programme has proven
260 to be a facilitator for:

- 261 - practical support for science education (75.3%)
- 262 - seismic risk awareness (70.1%)
- 263 - creation of a science club (68.8%)
- 264 - discovery of the world of research (66.3%)
- 265 - exchanges within a network of schools and researchers (65.6%)
- 266 - practical support for technology (58.5%)
- 267 - stimulating the interest of parents (45.5%)

268 The survey confirms that a seismometer installed in schools is an essential educational element
269 for the majority of teachers. From teacher feedback, we also note that, through this sensor
270 installed at the school, most of the students have acquired skills to become ambassadors for
271 seismic risk. Indeed, teachers mentioned that many students were invited to participate in
272 scientific events in order to present their work. It can be considered that at least 20,000 students
273 have been able to participate in and benefit from the educational seismology program in France.
274 Many of them are adults today, some of them have chosen a scientific career, but all are citizens
275 who have been made aware of seismic risk by studying seismic phenomenon through the
276 analysis of seismic data provided by educational and research seismometers.

277

278 **CONCLUSION**

279

280 All teachers agree on the fact that the presence of a seismometer at school is of great interest to
281 the fulfilment of the main objectives of scientific culture and seismic risk education. Many other
282 seismological networks for educational purposes have also emerged in Europe and around the
283 world. Such educational programmes have shown a positive impact among students (Zollo et
284 al., 2014). Educational seismological networks also draw their strength from the interaction
285 between teachers and researchers which has occurred under various circumstances. If citizen
286 science and educational seismology occupy such a prominent place in society today, it is
287 because they ask for citizen commitment on important issues, such as the prevention of seismic
288 risk and, more generally, of natural risks. Schools play a central role when addressing a young
289 public. The place of scientific research is also essential for better mitigation of natural hazards
290 and to better understand the anthropogenic impact on environmental systems. Therefore,
291 through this long-standing educational programme with the driving motivation of building a
292 seismic network across different educational communities in Europe, we must definitely focus
293 on prevention through education. Educational seismology networks do more because they
294 encourage students to adopt a scientific approach based on observation and measurement,
295 enabling them to understand the causes of earthquakes, the internal dynamics of the globe... and
296 to learn how the systems behave.

297 Similar programmes can be developed in other countries if the education system in those
298 countries is taken into account. However, one of the strongest elements for success is the
299 training of educators, a key ingredient of the programme. This training has followed teachers
300 throughout the last few years. Indeed, any new educational project must support teachers by
301 ensuring that they improve their scientific skills, specifically in Earth sciences. In order to

302 achieve this goal, bringing teachers closer to researchers in a reciprocal interaction is important.
303 Other key element are the use of friendly usable technical tools for manipulating scientific data
304 and teaching resources including learning aspects and assessment items. The way these features
305 are developed is country-dependent. Over the years, the French programme has taken care to
306 develop these activities (training courses, seminars, conferences) for the various users, such as
307 students, teachers and researchers.

308

309 Thus, teaching seismology using real, recent data from online sensors gives a lot of satisfaction
310 to students and teachers alike. This experience with educational seismology has now enabled
311 the University Côte d'Azur to set up an educational observatory of the Mediterranean
312 environment (EduMed). This observatory offers a data center for teaching topics beyond
313 seismology. Thus, using a similar educational approach, students and teachers have access to
314 hydrogeological data with a range of diversity (river characteristics, karstic cave distribution).
315 Meteorological data (rain, wind, temperature) are another set of physical data to be analysed
316 and understood. Data from buoys at sea provides crucial data for the oceanic realm.

317

318 Over its first three years of operation, the access to various quantitative physical data related to
319 the environment has allowed students to investigate different environmental subjects with the
320 help of teachers in different disciplines who have different teaching expertise and interests. This
321 extended programme has broadened student skills, their education of natural risks and their
322 awareness of their natural and societal environments.

323 Finally, the challenge of educational seismology is the improved training of our students in
324 Earth science so that they have a better understanding of how science is constructed and how it
325 progresses. Undoubtedly, trained citizens are better equipped to face their future with a
326 strengthened science-citizen link, and scientific vocations are the rewards of such innovative
327 and attractive training.

328

329 **Data and Resources**

330

331 The book “Le Cahier d’activités du SISMO, version 2”, funded by the Alcotra Programme
332 (European Union), was developed in 2009 and published by the School District of Nice
333 (France). A digital version is available at the following URL:

334 - <http://namazu.unice.fr/EDUMEDOBS/seismo/seismobook-version2.zip>

335 SeisGram2K and EduCarte (developed by Anthony Lomax and Jean-Luc Berenguer) software
336 is downloadable at the following URLs:

337 - <http://edumed.unice.fr/fr/contents/news/tools-lab/SeisGram2K>
338 - <http://edumed.unice.fr/fr/contents/news/tools-lab/EduCarte>

339 The professional seismometers deployed during the initial, regional and national phases were
340 the S.A.G.E station with a 3-component velocimeter (Noemax 20s). During the national phase,
341 Guralp CMG 6TD were also deployed, such as the educational Vibrato station
342 (<https://www.staneo.fr/vibrato.php>). This device and the TC1 seismometer (Van Wijk et. Al,
343 2013) are currently deployed (EduMed-Obs phase).

344

345 **Acknowledgments**

346 We are especially grateful to Guust Nolet and the reviewers for the remarks and suggestions
347 that helped us to greatly improve this paper. The educational network and activities presented
348 in this paper have been supported from the beginning by the French Ministry of Education. It
349 has also been supported and funded by the French Ministerial “Sciences à l’École” project, the
350 European NERA (Network of European Research Infrastructures for Earthquake Risk
351 Assessment and Mitigation) and SERA (Seismology and Earthquake Engineering Research
352 Infrastructure Alliance for Europe, Grant Agreement Number 730900) research projects, the
353 French Géoazur laboratory, and the Université Côte d’Azur through the EduMed Observatory
354 since 2018 (UCA-JEDI Investments in the Future project under reference number ANR-15-
355 IDEX-01).

356 **References**

357

358 Berenguer, J.L., Courboulex F., Tocheport A., and Bouin M.P : Tuned in to the Earth
359 ... from the school EduSismo: the French educational seismological network. Bulletin de la
360 Société Géologique de France, v. 184, p. 183-187, doi:10.2113/gssgbull.184.1-2.183,
361 January/February 2013

362 Berenguer, J.L., Pascucci, F., and Ferry, H. : Le cahier d’activités du SISMO, version
363 2, (eds) Scéren Nice, France, 2009

364 Bigot-Cormier, F., and Berenguer, J.L. : How students Can Experience Science and
365 Become Researchers: Tracking MERMAID Floats in the Oceans. Seismological Research
366 Letters, Volume 88, Number 2A, doi:10.1785/0220160121, 2017

367 Courboulex, F., Berenguer, J.L. , Tocheport, A., Bouin, M.P., Calais, E., Esnault, Y.,
368 and Virieux, J. : SISMOS à l'Ecole: A Worldwide Network of Realtime Seismometers in
369 Schools. *Seismological Research Letters*, volume 83, number 5, doi:10.1785/0220110139,
370 September/October 2012

371 Lomax, A. : The Orfeus Java Workshop: Distributed Computing in Earthquake
372 Seismology. *Seismological Research Letters*, Volume 71, Number 5, doi:
373 10.1785/gssrl.71.5.589, 2000

374 Steinberg, D.-J., Phinney, R.A, and Nolet, A.M. : The Princeton Earth Physics Project
375 presents: Seismometers-Telescopes for the Earth's Interior. American Astronomical Society,
376 196th AAS Meeting, id.24.04; *Bulletin of the American Astronomical Society*, Vol. 32, p.707
377 [https://ui.adsabs.harvard.edu/abs/2000AAS...196.2404S, 2000](https://ui.adsabs.harvard.edu/abs/2000AAS...196.2404S)

378 Van Wijk, K., Channel, T., Viskupic, K., and Smith, M.L. :
379 Teaching Geophysics with a Vertical-Component Seismometer, *Physics Teacher*, 51(9), 552-
380 554, doi: 10.1119/1.4830072, 2013

381 Virieux, J. : Educational Seismological project: EDUSEIS, *Seismological Research
382 Letters*, 71(5): 530-535. doi: <https://doi.org/10.1785/gssrl.71.5.530>, 2000

383 Zollo, A., Bobbio, A., Berenguer, J.L., Courboulex, F., Denton, P. , Festa, G., Sauron,
384 A., Solarino, S., Haslinger, F., and Giardini, D. : The European Experience of Educational
385 Seismology. In: Tong V. (eds) *Geoscience Research and Outreach. Innovations in Science
386 Education and Technology*, vol 21. Springer, Dordrecht, 2014

387

388 **Mailing list addresses**

389

390 Jean-Luc Berenguer: jean-luc.berenguer@univ-cotedazur.fr

391 Julien Balestra: julien.balestra@univ-cotedazur.fr

392 Fabrice Jouffray: fabrice.jouffray@univ-cotedazur.fr

393 Françoise Courboulex: courboulex@geoazur.unice.fr

394 Fabrice Mourau : Fabrice-Benjami.Mourau@ac-nice.fr

395 Jean Virieux : Jean.Virieux@univ-grenoble-alpes.fr

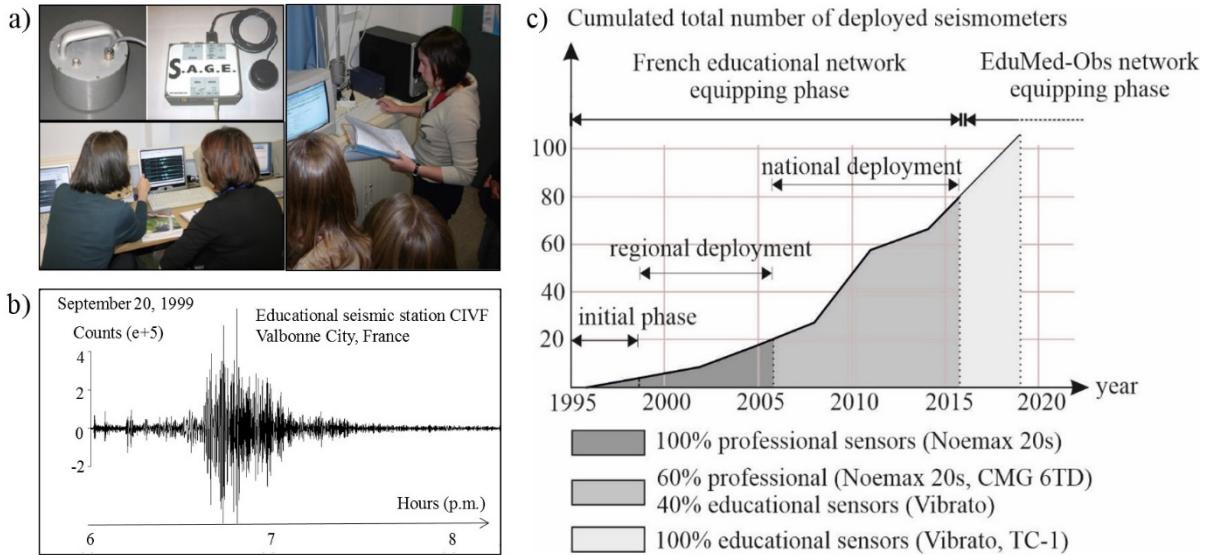
396 **Figure captions**

397

398 Figure 1: First educational seismic stations deployed at the Valbonne International School. (a)
399 Students working on seismograms from a specific educational database. Informed consent was
400 provided by the individuals pictured for the publication of these identifiable images. (b) Record

401 of the Chi Chi earthquake (Taiwan, Mw 7.6), which occurred on September 20, 1999 and was
402 recorded at the French educational CIVF seismic station. Values in abscissa are hours of the
403 current day (UTC time, p.m.). (c) Evolution of the number of educational seismometers
404 deployed during the past equipping phase of the French educational network, and currently with
405 the EduMed-Obs project. Colors under the curve and corresponding colored boxes give an
406 indication of the kind of sensors deployed during each phase. See “Data and Resources” for
407 further details.

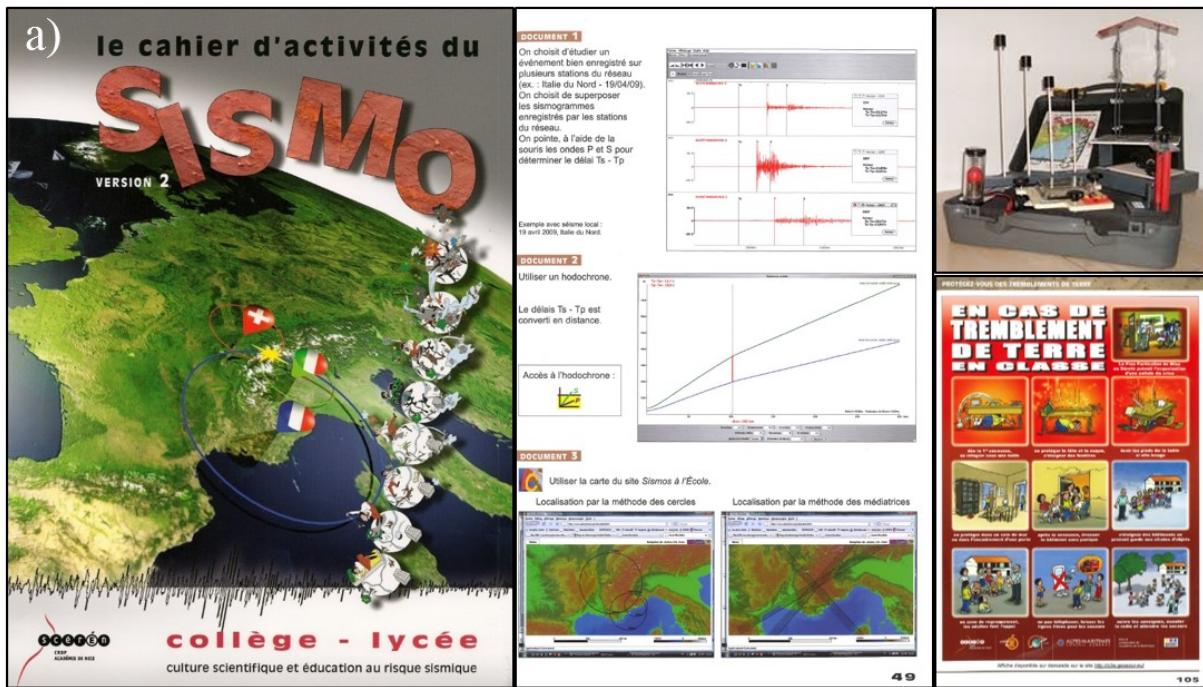
408


409 Figure 2: Focus on teachers’ answers to the survey. In this case, the graph shows the impact of
410 the installation of a seismometer in a school, relative to different considerations.

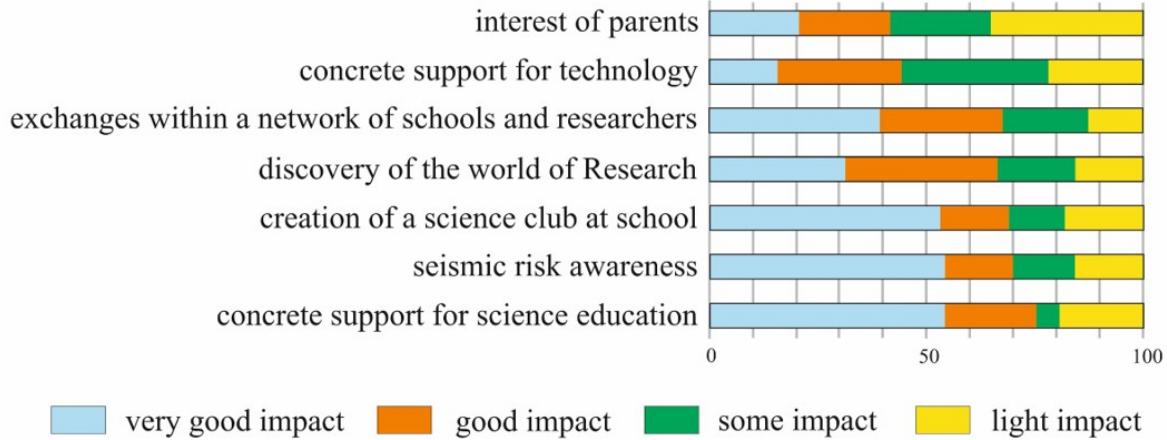
411

412

413 **Figures**


414

415


416 Figure 1: First educational seismic stations deployed at the Valbonne International School. (a)
 417 Students working on seismograms from a specific educational database. Informed consent was
 418 provided by the individuals pictured for the publication of these identifiable images. (b) Record
 419 of the Chi Chi earthquake (Taiwan, Mw 7.6), which occurred on September 20, 1999 and was
 420 recorded at the French educational CIVF seismic station. Values in abscissa are hours of the
 421 current day (UTC time, p.m.). (c) Evolution of the number of educational seismometers
 422 deployed during the past equipping phase of the French educational network, and currently with
 423 the EduMed-Obs project. Colors under the curve and corresponding colored boxes give an
 424 indication of the kind of sensors deployed during each phase. See "Data and Resources" for
 425 further details.

426

b)

How is the school seismometer the most useful ?

427

428 Figure 2: Pedagogical resources produced by the French educational network. (a) The “seismo”
 429 exercise book and the “seismo” box used to illustrate many aspects of the seismic phenomenon.
 430 (b) Focus on teachers’ answers to the survey. In this case, the graph shows the impact of the
 431 installation of a seismometer in a school, relative to different considerations.