

1

Remember rhythm and rime:

2

Memory and narratives in science communication

3

Aquiles Negrete

4

Universidad Nacional Autónoma de México

5

(UNAM-CEIICH)

6

7

8

'Every man's memory is his private literature'

9

Aldous Huxley

10

Abstract

12 To study how memorable different ways of presenting information are is fundamental task
13 for science communication in order to evaluate materials that not only need to be understood
14 by the general public, but also need to be retained in the long-term as a part of the
15 communication process. In this paper I will give a brief introduction to cognitive psychology,
16 the study of memory and the tasks used for measuring this. I will present theoretical evidence
17 from the field of memory studies, which suggests that narratives represent a good recall
18 device. I will also be discussing emotion as a way of focusing attention, promoting rehearsal
19 in memory and inducing long-term potentiation. I will examine the use of stories as modelling
20 tools that organise information, provide schemas and allow extrapolation or prediction. I will
21 likewise show the value of stories as mnemonic devices. I will discuss memory as a context-
22 dependent phenomenon, and as a cross-referencing system. Finally I will address the concept
23 of memory span and paired associate recall and their implications in storing and recalling
24 narratives.

25

1. Introduction

27

28 The question of how knowledge can be presented to the public in order to convey as much
29 information as possible with a maximum of fidelity is a central one for science
30 communication, (Dornan, 1990; Durant *et al.*, 1989). Memory is one possible way of

31 assessing learning (Sternberg, 2003), and therefore of judging the successful communication
32 of information. Studying how memorable different text formats are, represents a fundamental
33 task for science communication in order to produce materials that are not only expected to
34 be understood by individuals but also stored in the long term memory.

35

36 Much of the information that we store in our memory is not acquired first hand through
37 personal experience, but second hand, through reading or listening to other people talk about
38 their experiences (Cohen, 1989). Memory for spoken information and memory for written
39 information differ in important ways. Reading is a private and solitary occupation; it has no
40 conversational context such as intention, intonation, gesture, facial expression, or personality
41 of the speaker. Written material has to be much more formally structured and must conform
42 to certain rules and formats to be intelligible to a wide range of potential readers.

43

44 In general, we remember meaning better than wording (Cohen, 1989). The general rule for
45 narratives (short stories, drama, comics, novels, etc.) appears to be that the meaning, the gist,
46 the most important and most relevant facts are preserved by the memory (Cohen, 1989).
47 Almost any material becomes easier to remember if it is included in a narrative (Bruner,
48 1986; 1990). There are several factors concerning memory that make narrative a lasting
49 structure, some of them related to the memory process itself and others to the intrinsic
50 characteristics of narratives as a means of expressing information

51

52 **2. Objective and methodology**

53

54 The objective of this work is to provide a literary review of memory studies regarding
55 narratives memorability.

56

57 In previous work (Negrete, 2009; Negrete and Lartigue, 2010; Negrete 2013; Rios and
58 Negrete 2013; Negrete, 2014; Lartigue and Negrete 2016) I provided empirical evidence
59 suggesting that narratives represent a memorable text format. In this opportunity my intention
60 is to examine what has been reported in literature regarding features of the memory process
61 that contributes to make narratives a memorable device. Although narratives have

62 implications in short memory processes, I will concentrate on long-term memory, the most
63 relevant features for science communication.

64 **3. *Literary review on memory studies***

65

66 **3.1 Cognitive Psychology**

67

68 Cognition is a sub-discipline of psychology that studies how humans perceive, learn,
69 remember and think about information (Sternberg, 2003). Memory is the means by which
70 humans retain and draw upon past experience and use this information in the present (Tulving
71 and Craik, 2000). It is the record of experience that underlies learning. Learning can be
72 defined as a biological mechanism that permits us to face a changing world, i.e., it is a process
73 by which long lasting changes in the behaviour potential take place as a result of experience.

74

75 In cognitive psychology three main memory operations are distinguished: (i) encoding, (ii)
76 storage, and (iii) retrieval (Baddeley, 2000). Each operation represents a stage in memory
77 processing. Through encoding the individual transforms sensory data into a form of mental
78 representation; through storage, the encoded information is maintained in the memory and
79 through retrieval, it is pulled out for use. Pioneer work by Tulving and Pearlstone (1966), as
80 well as Murdock (1961), suggested that although encoding, storage, and retrieval phenomena
81 are theoretically clearly defined, in practice they represent a considerable overlap and they
82 are therefore too interdependent to allow for working with each as a separate unit.

83

84 **3.2 Long-term Memory**

85

86 There are different ways of encoding in long-term memory (LTM). Most information stored
87 in long-term memory seems to be semantically encoded. There is evidence in early work on
88 the area that other forms of encoding exist in long-term memory, such as visual encoding
89 (Frost, 1972) and acoustic encoding (Nelson and Rothbart, 1972), but they play a minor role
90 in relation to semantic encoding.

91

92

93 Information from short-term memory is transferred to long-term memory depending on
94 whether the information involves declarative (declarative knowledge refers to recalling facts)
95 or non-declarative memory. Some forms of non-declarative memory like priming and
96 habituation are ephemeral and dissipate rapidly; others such as procedural and conditioning
97 are maintained for longer periods, especially when rehearsed. For declarative knowledge to
98 enter into LTM, two main processes are involved: attention and association (of new
99 information with previous knowledge and also of schemas). The process of integrating new
100 information into stored information is referred as consolidation (Squire, 1986).

101

102 Retention and enhancement of memory during consolidation can be promoted with different
103 meta-memory strategies (Koriat and Goldsmith, 1996; Metcalfe, 2000). These strategies
104 involve a conscious act of reflection by rehearsing and organising (mnemonics) new
105 information destined to stay in long-term memory.

106

107 3.2.1 Long-term Potentiation and Rehearsal

108

109 Every experience leaves a trace in the brain. Every experience is potentially a memory but
110 only some traces seem to become permanently imprinted into brain tissue. Every experience
111 – whether it is a real or perceived event, a thought, a feeling, a fragment of the imagination,
112 or a recollection of a previous experience – involves the activation of a unique neural firing
113 pattern (Maren, 1999). Some events produce strong and long-lasting patterns, which tend to
114 recur continually. When connections are repeatedly activated, they form even more robust
115 links, which bind them into a single unit: long-term potentiation (LTP). Research suggests
116 that memories generated in this way (LTP) can last a lifetime (Barhwick & Hall, 1991).

117

118 Rehearsal is perhaps the simplest and most effective strategy that can be used in a memory
119 task. It is an interactive process by which information in short-term memory is continually
120 articulated or ‘refreshed’. Its importance is that it maintains information in short-term
121 memory by ensuring a sufficiently high level of activation and it facilitates the transfer of
122 information to long-term memory and subsequent retrieval by allowing additional time for
123 more elaborate item processing (Dempster, 1981).

124 3.2.2 Oblivion

125

126 Oblivion is defined as the decline of performance after learning. It occurs after a certain
127 period. To measure it, researchers observe behaviour after a period in which the learned
128 behaviour has not taken place (retention period).

129

130 There is some controversy about the effect that time has on oblivion. Some authors believe
131 that time does not produce oblivion, as time is not an event in itself. Therefore there are other
132 events that cause it. An experiment by Squire (1986) showed that oblivion follows a potential
133 curve (Anderson and Pichert, 1978).

134

135 It is worth noting that oblivion occurs quickly when we learn lists of unrelated words or
136 unsystematic items. In contrast, if the text is meaningful, it is more likely that we will
137 remember it for longer periods. Previous knowledge (proactive knowledge) can also reduce
138 oblivion. Pioneer work by Sir Frederick Bartlett (1932) showed that a story which was
139 difficult to understand was made modern and comprehensible by participants thanks to
140 proactive knowledge. In the geosciences context, it has been suggested that Myths (a form
141 of narratives) help in reducing oblivion of geological hazards (flooding, eruptions and
142 earthquakes) and this proactive knowledge has helped to create a culture of prevention in
143 different human groups (Lanza and Negrete, 2007).

144

145 3.3 Emotion and Attention

146

147 Experiencing emotion provides a basis for simple learning and memory (Sternberg, 2003).
148 Emotional learning and memory such as fear conditioning are simple forms of associative
149 learning that supports the acquisition of knowledge; it is acquired rapidly and retained over
150 long periods (Maren, 1999). An effect of emotional stimulation is to direct attention towards
151 the events that provoked it. This attention in turn augments the brain activation associated
152 with the event. Attention is effectively the first stage of laying down memory (Rupp, 1998).

153

154 Evidence shows that what distinguishes enduring experiences from those that are lost is that
155 when they occurred they either created or coincided with higher than normal levels of

156 emotion (Baddeley, 1997). It is clearly vital for humans to remember events that are
157 emotionally arousing because they are likely to be important ones. They can be used to guide
158 present and future actions. They can be used, for example, to avoid danger (as geological
159 hazards) or to steer us towards a desirable outcome (O'Brien, 2000). Interestingly, the same
160 neuro-chemicals that are released into the bloodstream to put the body on alert also instruct
161 the brain to store a lasting record of the moment. This is the case for acetylcoline,
162 noradrenaline, dopamine and glutamate, which all participate in the creation of links between
163 neurons (Rupp, 1998).

164

165 Durability of a particular memory seems to depend on how exciting the original experience
166 was (or how excited the individual's brain was when it occurred), how much attention was
167 paid to it and how often it is recalled. In Lotman's words (1990), 'narratives are a way of
168 expressing ideas and amplifying emotions'. If emotions are generated, then opportunities to
169 concentrate attention and produce long-term potentiation are higher. Also, the possibility to
170 rehearse the emotions is greater, since we tend to repeatedly remember passages that result
171 from a meaningful or emotional experience.

172

173 3.4 Memory in Context and Knowledge Networks 174

175 According to Gough (1993), context is of paramount importance in order to understand
176 memory process. No subject exists in isolation. Knowledge does not remain neatly
177 compartmentalised into disciplines, but spills over and 'transgresses' boundaries. Everything
178 that happens has a context, not only circumstances and surroundings but also internal states,
179 emotions and physical feelings. If an event is laid down as a memory, some of its context is
180 laid down with it and becomes a hook for remembering (Rupp, 1998). Contextual elements
181 can be valuable aids to recall because when one part of a memory is retrieved, it often 'hooks
182 out' all the others.

183

184 Memories that have similar connotations, forming links based on meaning, are called
185 semantic links. Semantic links act like a cross-referencing system: once we have found a
186 useful piece of information, we can connect it with many more that might also be relevant
187 (Cohen, 1989). Memories that are formed simultaneously are linked by association. These

188 associative links are fundamental to our understanding of the world and often allow us to
189 make predictions based on previous experience (see also section on *Models and Schemas*).
190 Most of the time, semantic and associative links work unconsciously: as soon as one concept
191 is activated in memory, activation spreads automatically to other ideas related through
192 meaning or past experiences.

193
194 3.5 Human Memory Systems

195
196 According to Tulving (1972), there are five major human memory systems: semantic,
197 episodic, procedural, perceptual, representational and short term memory. There is
198 reasonable evidence of the existence of the first two types: semantic and episodic memory.
199 With the aid of semantic memory, individuals are able to register and store information about
200 the world in the broadest sense (i.e. not personally experienced) and are capable of retrieving
201 it. Semantic memory allows people to think about things that are absent to the senses at the
202 time (Tulving 1972). Semantic memory is automatic, i.e., it does not require a conscious
203 recollection. It develops earlier in childhood than episodic memory (Tulving 1972).

204
205 3.6 Episodic Memory

206
207 This is the type of memory used to remember events in our lives. Therefore, episodic memory
208 is related to the self-experiences in subjective space and time. An episodic memory consists
209 of memories that come from different areas of the brain that are bound together to create an
210 'episode', rather than a collection of impressions or items of knowledge. In contrast with
211 semantic memory and other kinds of memory systems, in this case the individual is able to
212 transport into the personal past and future at will (Tulving 2000). In times of crisis the
213 individual is able to bring the past to the forefront in order to reinterpret the events of a
214 lifetime.

215
216 Tulving (1966) pointed out that retrieving information from each memory system is
217 associated with distinct memory awareness experiences. According to this author, when an
218 individual uses episodic memory, he is conscious of remembering past experiences, whereas

219 in the case of semantic memory, a person's conceptual knowledge is characterised by
220 memory awareness involving feelings of familiarity or "just knowing".

221

222 Episodic memory is characterised by two aspects of temporal structuring: the location of the
223 event in a specific past time in relation to the present and a temporal sequencing within the
224 episode remembered (Nelson 1972). Both of these aspects rely on a sense of the "extended
225 self" and apparently the role of autobiographic memory is to provide a sense of continuity of
226 the self across time from past to future (Nelson 1972).

227

228 There is a strong link between episodic memory and emotions. The way in which memories
229 are formatted determines their emotional significance and the retrieval pathways to other
230 episodic memories. Earlier experiences tend to be recalled from a third person's point of view
231 (i.e. as an observer), while more recent events are usually recalled from the first person's
232 point of view (i.e. as a participant). Emotions are usually stronger when memories are
233 recalled from a participant's point of view, while the observer's point of view tends to be
234 more objective.

235

236 3.7 Mnemonics

237

238 Before the invention of writing, and long afterwards in many cultures, stories were sung or
239 recited from memory. Rhythm, rhyme and melody were used to provide a framework that
240 aided in their memorisation. Mnemonics was one method employed to aid recitation from
241 memory. It is defined as the art of improving memory, or a system to aid the memory, i.e.,
242 any strategy that helps people remember. It normally means signals for learning that will later
243 induce the experience to be remembered.

244

245 In Yates' view (1992), a feature of Cosmas Rossellius's book (*Thesaurus artificiosae
memoriae*) are the mnemonic verses given to help memorize orders of places in Hell, or the
246 order of the signs of the zodiac. These verses were written by Dominican inquisitor. These
247 carmina by the Inquisitor constitute an interesting example of the use of artificial memory
248 via mnemonics (Yates, 1992).

250

251 According to Lotman (1990), mnemonics can be seen as a way of internal communication
252 that is made up of messages to the self with the purpose of retaining information and includes
253 different sorts of memoranda and reminders. Essentially, such reminder devices add meaning
254 (or personal meaning) to otherwise meaningless, unrelated or arbitrary lists of items for the
255 individual. Mnemonics superimposes an artificial, logical structure (which can be seen as a
256 model) on data, which is not necessarily related. A mnemonic device can be an image, an
257 acronym, a verse, a peg word, a catch phrase or a story that helps us to remember (Luria,
258 1986).

259

260 Most of the world's great religions have strong oral traditions in which sacred texts are
261 memorised in their entirety for prayer and to preserve them for posterity. For example, in the
262 *Mishna*, the Jewish written record of the oral law, some literary resources such as metaphors,
263 digressions and poetic images can actually be viewed as mnemonic aids. The *Qur'an* also
264 contains mnemonic aids. This religious book was written both as a work of rhythmic prose
265 and as an epic poem; thus, rhythm, rhyme, and meaning connect every word making it
266 memorable (Luria, 1986).

267

268 3.8 Memory Span and Paired Recall Association

269

270 In early work in this area, Dempster (1981) defined memory span as the maximum length of
271 a series of words, images or items that can be reproduced at different stages in time. One of
272 the most practical and important implications of memory study is in education. As short-term
273 memory span is indicative of overall intellectual ability it can be used as a diagnostic tool
274 both for helping educators (and communicators) to adapt teaching (and learning materials)
275 to the specific needs of the learner and for measuring improvements in intellectual ability
276 Dempster (1981). Higher spans are the result of grouping and organisation (Estes, 1974).
277 Organization, in turn, is one of the key elements of paired recall association.

278

279 Pioneer work by Epstein, Rock and Zuckerman (1960), suggested that when two objects have
280 been perceived or imagined to be interacting, recalling the name of one, in response to the

281 name of the other, is more frequent than when the objects have been perceived or imagined
282 to be side by side. This effect in memory is called paired recall association. As a result of the
283 relationship between two objects, they develop certain properties and interactions. A relation
284 or interaction constitutes a feature that characterises both objects, which enables the
285 individual to retrieve one when the other is provided (Wilton, 1989).

286

287 When words are used as units of meaning, the semantic components of the words are
288 activated (Wilton, 1990). If two words are associated semantically, this assures that common
289 structures are activated in that task. Therefore, in the search for recall, the items to be recalled
290 are found together. On the other hand, when words are used as a collection of symbols
291 without semantic meaning, the common structures are not activated and recall is
292 disorganised.

293

294 3.9 Models and schemas

295

296 Memories are not simple records of past events. Memories are, in fact, reconstructions or
297 models of what occurred (Baddeley, 1997). Models and schemas (abstract, content-free
298 information about certain structure) are useful to organise knowledge acquired in previous
299 experiences, to fill in gaps in memories, to make educated guesses about things that are not
300 remembered fully and to extrapolate on those that are not known but where there is a previous
301 knowledge that allows it.

302

303 3.9.1 Story schemas

304

305 One of the earliest studies of memory and narratives was carried out by Frederic Bartlett
306 (1932). Unlike many psychologists of his day, Bartlett recognised the need to study memory
307 retrieval with connected texts rather than studying unconnected strings of digits, words or
308 nonsense syllables. He introduced the idea that schemas, or mental frameworks, built up from
309 prior knowledge and experience, are influential in determining and shaping the memory of a
310 story. His experiments consisted in presenting an indigenous, North American story called
311 *The War of Ghosts* to a group of participants in Britain. Bartlett found that his participants
312 distorted their recall to provide a story that was more comprehensive to them. Their previous

313 knowledge and expectations had a substantial effect on their recollection. In so doing, Bartlett
314 developed the idea that in memory tasks, we use our already existing schemas, which affect
315 the way in which we recall and learn.

316

317 During the decade of the 1970s, Bransford and Johnson (1973) challenged the idea that
318 schemas work at retrieval stage. They constructed texts that described a situation in such a
319 way that the reader was unable to understand its meaning unless some clues were provided.
320 The researchers suggested that when new information cannot be related to an appropriate
321 schema, very little is remembered. Other researchers found similar results in comparative
322 experiments of prose retention (see Dooling and Lachman, 1971).

323

324 Today two kinds of schemas are distinguished: event schemas and story schemas. Event
325 schemas consist of knowledge about the subject matter of the story (Cohen, 1989). For
326 example, the event schemas activated in remembering *The Man Who Mistook His Wife for a*
327 *Hat* by Oliver Sacks might include knowledge of psychiatric hospitals, self-identity,
328 physiology of the brain, sensory ghosts, disembodyment, or autism. Story schemas consist of
329 abstract, content-free knowledge about the structure of a typical story.

330

331 3.9.2 Models

332

333 According to the classical work by Giere (1979), models can be classified into three
334 categories: scale models that represent reality to a particular scale; analogue models which
335 are useful for understanding other proposed new models; and theoretical models, the most
336 abstract form of a model as they are imaginary and often explained with analogical models.

337

338 In Casti's (1993) view, models can serve three purposes: they can be predictive, explanatory
339 and prescriptive. Prescriptive models give us the opportunity not just to explain or predict
340 but also to manipulate some aspect of the world through 'handles' on the model (*op.cit.*).

341

342 Casti (1993) compares modelling with painting and other artistic disciplines. When an artist
343 paints, he never creates on canvas the exact image of the subject in front of him. Instead he

344 tries to capture the essence of meaningful characteristics so that the viewer is able to know
345 more about the object painted than from looking at the real thing. In this sense the object art
346 (paint, sculpture, music, or literature) shows hidden characteristics by using magnifying
347 glasses, special lights, tones, rhythms or narrative resources. Giere's (1979) and Casti's
348 (1993) arguments claim that stories can be seen as narrative models that has the power to
349 explain, the capacity to show scale, an ability to predict the future, to produce analogies and
350 metaphors as well as to theorise.

351

352 Yuri Lotman (1977) suggested that semiotic systems are models that explain the world in
353 which we live. Amongst all semiotic systems, language is the primary modelling system in
354 which we apprehend the world by means of the model that it provides. Myth, cultural rules,
355 religion, paint, music, literature (narratives) and science are secondary modelling systems.
356 All of them are of equal interest as models to understand and talk about the world.

357

358 In Johnson-Laird's (1983) words: '... stories are represented as mental models in the reader's
359 mind'. To construct a mental model of a story is to imagine what was happening in the
360 narrative. A mental model is a global representation that integrates information from different
361 parts of the story. It is constructed as the story unfolds, and represents the scene, characters,
362 and events, incorporating spatial, temporal, and causal relations (Johnson-Laird, 1983).
363 Mental models have the intuitively appealing feature of treating memory for stories and
364 memory for real-world events as essentially the same (Yates, 1992).

365

366

367 **Narratives as mnemonic devices for Science Communication**

368

369 In the previous section I provided a literature review on memory studies supporting the idea
370 that narratives represent a memorable structure. In the following part I will summarise these
371 findings and highlight their importance for Science Communication.

372

373 There are three important moments for Long Term Potentiation (long lasting memory):
374 attention, emotional response and rehearsal (see section 3.2.1). It is interesting noting that a
375 typical oral joke (normally the narrative of something funny happening to somebody)

376 concentrate these tree elements. When someone is going to tell a joke people pay “attention”
377 to the speaker. If the joke is good, they “laugh” (emotional response). Hours later or even the
378 next day, when people remember the joke, they will laugh probably again (rehearsal). That
379 is the way people learn the jokes and reproduce them with friends and colleagues. The joke
380 has a precise structure in order to be funny. It is interesting how we are able to remember
381 such structure with remarkable fidelity so we are able to retell the joke with the precision
382 required to make people laugh. Humorous narratives should be considered as an important
383 resource for science communication as they represent a tool that can induce Long Term
384 Potentiation by promoting attention, emotional response, and rehearsal.

385

386 A story can be seen as an expressive device that by means of a plot associates characters,
387 situations, places, and information to produce semantic links and a cross-referencing system
388 that can assist in storing and retrieving information in, and from, memory (see section 3.4).
389 Following this line of argument, it would be plausible that stories represent a means of
390 increasing memory span, a way to facilitate retrieval from memory by paired recall
391 association and a powerful device to convey science to the general public in a long lasting
392 way (see section 3.8).

393

394 Narratives offer information that is contextualised in real-life situations (episodes). When an
395 episode in a narrative work evokes emotion in the reader, this incident may become
396 memorable. Fictional narratives provide the opportunity to create episodes (see section 3.6).
397 If the narrative episode evoke emotions and part of it contain science, then it would be
398 reasonable to expect that information contained in it (included science) will form a lasting
399 memory.

400

401 Narratives can be seen as mnemonic structures that superimpose an artificial, logical structure
402 on data which is not necessarily related (see section 3.7). In this way scientific factual
403 information can be communicated by being embedded in a mnemonic structure (the story)
404 which facilitates future recollection.

405

406 For science communication, one of the advantages of stories schemas is that the majority of
407 people have been exposed to them since childhood in such forms as religious instruction,

408 drama, or reading fictional literature. Therefore it represents a widespread and well-
409 established knowledge held by the general public that can be used, without previous
410 instruction, to the benefit of popularisation of science.

411

412 Finally, narratives can also be seen as secondary modelling systems in which information is
413 represented and organised by means of a plot (see section 3.9.2). This enables us to make
414 sense of reality and prepare information in an organised structure ready for future recall.
415 Stories can be seen as narrative models as they depict the model which has the capacity to
416 explain. For example in *Carbon* by Primo Levi (1985), the capacity to show scale as in *The*
417 *Crabs Take Over the Island* by Anatoly Dnieprov (1966), an ability to predict the future as
418 in *The Time Machine* by H.G. Wells (1895), or to produce analogies and metaphors as in
419 *Flatland* by Edwin A. Abbot (1884) and to theorise as in Italo Calvino's *Cosmicomics* (1969).
420 Again, needless to say, a great opportunity for science communication to use a powerful tool
421 (narratives) to communicate science.

422

423

424 ***Final note***

425

426

427 The evidence from literature that I have exposed in this paper, together with empirical work
428 that I published in previous work (Negrete, 2009; Negrete and Lartigue, 2010; Negrete 2013;
429 Rios and Negrete 2013; Negrete, 2014; Lartigue and Negrete 2016) suggest that narratives
430 represent an interesting tool for science communication to convey science not only in an
431 attractive and reliable format, but also in a memorable way.

432

433 **Bibliography**

434

435

436 Anderson R.C. & Pichert, J.W.: Recall of previously unrecallable information following a
437 shift in perspective, *Journal of Verbal Learning and Verbal Behaviour*, 17, 1-12, 1978

438 Baddeley, A.D.: *Human memory: theory and practice*, Minneapolis: Alyn & Bacon,
439 USA, 1997.

440 Baddeley, A.D.: The episodic buffer: A new component of working memory. *Science-Fiction
441 Studies*, 4, 417-423, 2000.

442 Bartlett, F.C.: *Remembering: a study in experimental and social psychology*. New York:
443 Cambridge University Press. USA, 1932.

444 Bahrick, H.P. and Hall, L.K.: Lifetime maintenance of high school mathematics contents.
445 *Journal of Experimental Psychology* 120 (1), 20-33, 1991.

446 Bransford, J.D. and Johnson, M.K.: Considerations of some problems of comprehension, In:
447 *Visual information processing*, edited by Chase W.G., Cambridge Academic Press,
448 1973.

449 Casti, J.: *Be worlds would*, John Wiley & Sons Inc., New York, 1993.

450 Cohen, G.: *Memory in the real world*, Lawrence Erlbaum Associates Ltd, London, 1989.

451 Dempster, F.N.: Memory span: sources of individual and developmental differences.
452 *Psychological Bulletin* 89 (1), 63-100, 1981.

453 Dornan, C.: Some problems of conceptualizing the issue of 'science and the media', *Critical
454 Studies in Mass Communication* 7, 48-49, 1990.

455 Dooling, D.J. and Christiaansen, R.E.: Episodic and semantic aspects of memory for prose,
456 *Journal of Experimental Psychology*, 3, 428-436, 1977.

457 Dooling, D.J. and Lachman, R.: Effects of comprehension on retention of prose, *Journal of
458 Experimental Psychology* 88, 216-222, 1971.

459 Durant J. R., Evans, G. A. and Thomas, G.P.: The public understanding of science, *Nature*
460 340, 11-14, 1989.

461 Epstein, W., Rock, I., and Zuckerman, C.B.: Meaning and familiarity in associative learning.
462 *Psychological Monographs: General and Applied* 74, 1-22, 1960.

463 Estes, W.K.: Learning theory and intelligence, *American Psychologists* 29, 740-749, 1974.

464 Frost, N.: Encoding and retrieval in visual memory tasks. *Experimental Psychology*, 9, 317-
465 326, 1972.

466 Giere, R.: *Understanding scientific reasoning*, The Dryden Press, Sunders Collage
467 Publishing, New York, 1979.

468 Gough, N.: *Laboratories in fiction: science education and popular media*, Geelong: Deakin
469 University, Australia, 1993.

470 Hyde, T. and Jenkins, J.J.: Differential effects of incidental tasks on the organization of recall
471 of lists of highly associated words, *Journal of Experimental Psychology*, 3, 472-
472 481, 1969.

473 Johnson-Laird, P.N.: *Mental models*, Harvard University Press, USA, 1983.

474 Kintsch, W. and Van Dijk, T.A.: Toward a model of text comprehension and production.
475 *Psychological Review*, 85(5), 363-394, 1978.

476 Koriat, A. and Goldsmith, M.: Monitoring and control processes in the strategic regulation
477 of memory accuracy. *Psychological Review*, 103, 490-517, 1996.

478 Lartigue C. Negrete A.: Photocomic Narratives as a Means to Communicate Scientific
479 Information about Use, Treatment and Conservation of Water, *Modern*
480 *Environmental Science and Engineering*, 2, 800-808, 2016.

481 Lotman, M.Y.: Primary and secondary communication-modeling systems, In: *Soviet*
482 *Semiotics*, edited by: Lucid D.P., John Hopkins University Press, USA, 1977.

483 Lotman, M.Y.: *Universe of the mind. A semiotic theory of culture*, Indiana University Press,
484 USA, 1990.

485 Luria, A.R.: *The Mind of the mnemonists*, Harvard University Press, USA, 1986.

486 Nelson, T.O. and Rothbart, R.: Acoustic savings for items forgotten from long-term memory,
487 *Journal of Experimental Psychology*, 93, 357-360, 1972.

488 Maren, S.: Long-term potentiation in the amygdala: a mechanisms for emotional learning
489 and memory, *Trends in Neuroscience*, 22, 561-567, 1999.

490 Metcalfe, J.: Metamemory: theory and data, In: *The Oxford handbook of memory*, edited by
491 Tulving E. and Craick M., Oxford University Press, New York, 197-211, 2000.

492 Murdock B.B.: Short-term retention of single paired-associates, *Psychological Reports*,
493 8,280-289, 1961.

494 Negrete A.: So what did you learn from the story? Science communication via narratives,
495 VDM Verlag & Co, Germany, 2009.

496 Negrete, A. and Lartigue C.: The science of telling stories: Evaluating science
497 communication via narratives (RIRC method), Journal of Media and
498 Communication Studies, 2(4), 98-110, 2010.

499 Negrete A.: Constructing a comic to communicate scientific information about sustainable
500 development and natural resources in Mexico, Social and Behavioral Sciences,
501 103, 200 – 209, 2013.

502 Negrete A.: Tell me how much science you can tell: the RIRC method, Lambert Academic
503 Publishing, Germany, 2014.

504 O'Brian, L.: Learn to remember, Duncan Baird Publishers, New York, USA, 2000.

505 Rios and Negrete.: The object of art in science: Science communication via art installation,
506 Journal of Science Communication, 12(03), 1-18, 2013.

507 Rupp, R.: Committed to memory, Aurum Press Ltd, New York, USA, 1998.

508 Squire, L.R.: Mechanisms of memory, Science, 232(4758), 1612-1619, 1986.

509 Stenberg, R.J. : Cognitive psychology, Thomson Wadsworth, New York, USA, 2003.

510 Tulving, E. and Pearlstone, Z.: Availability versus accessibility of information in memory
511 for words, Journal of Verbal Learning and Verbal Behaviour 5, 381-391, 1966.

512 Tulving, E.: Episodic and semantic memory, In: Organization of memory, edited by Tulving
513 E. and Donalson W., New York Academic Press, New York, USA, 1972.

514 Tulving, E. and Craick, F. I.: The Oxford handbook of memory, Oxford
515 University Press, New York, USA, 2000.

516 Wilton, R.N.: The structure of memory: evidence concerning the recall of surface and
517 background colour shapes, Quarterly Journal of Experimental Psychology, 41A, 579-
518 598, 1989.

519 Wilton, R.N.: The mediation of paired associate recall by representation of properties
520 ascribed to objects in perception and imagination, Quarterly Journal of Experimental
521 Psychology 42A, 611-634, 1990.

522 Yates, F.A.: The art of memory, London: Pilmico Press, UK, 1992.