

Remember rhythm and rhyme: Memorability of narratives for science communication

Aquiles Negrete

Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades

CEIICH-UNAM

aqny@unam.mx

'Every man's memory is his private literature'

Aldous Huxley

Abstract

13 Once upon a time narratives were considered to be a non-reliable way of representing and
14 communicating science. Nowadays, narratives are widely accepted as an accurate way of
15 conveying science, they represent an effective emotional trigger, a lasting memory structure
16 and a powerful aid for learning. To study how memorable different ways of presenting
17 information are is a fundamental task for science communication in order to evaluate
18 materials that not only need to be understood by the general public, but also need to be
19 retained in the long-term as a part of the communication process. In this paper I will give a
20 brief introduction to cognitive psychology and the study of memory in relation to narratives.

22 Evidence from the field of memory studies suggests that narratives represent a good recall
23 device. They can generate emotion and this in turn is a way of focusing attention, promoting
24 rehearsal in memory and inducing long-term potentiation. Similarly, a story produces
25 semantic links that might assist in storing and retrieving information from memory. Studies
26 suggests that memory span and paired associate recall have implications in storing and
27 recalling narratives. Evidence also suggests that the use of stories as modelling tools can
28 organise information, provide schemas and allow extrapolation or prediction. Finally
29 literature on memory suggests that narratives have a value as mnemonic devices.

31 **1. Introduction**

32

33 The question of how knowledge can be presented to the public in order to convey as much
34 information as possible with maximum fidelity is a central one for science communication,
35 (Dornan, 1990; Durant *et al.*, 1989). Memory is one possible way of assessing learning
36 (Sternberg, 2003), and therefore of judging the successful communication of information.
37 Studying how memorable different text formats are, represents a fundamental task for science
38 communication in order to produce materials that are not only expected to be understood by
39 individuals but also stored in the long-term memory.

40

41 Much of the information that we store in our memory is not acquired first hand through
42 personal experience, but second hand, through reading or listening to other people talk about
43 their experiences (Cohen, 1989). Memory for spoken information and memory for written
44 information differ in important ways. Reading is a private and solitary occupation; it has no
45 conversational context such as intention, intonation, gesture, facial expression, or personality
46 of the speaker. Written material has to be more formally structured and must conform to
47 certain rules and formats to be intelligible to a wide range of potential readers.

48

49 In general, we remember meaning better than wording (Cohen, 1989). The general rule for
50 narratives (short stories, drama, comics, novels, etc.) appears to be that the meaning, the gist,
51 the most important and most relevant facts are preserved by the memory (Cohen, 1989).
52 Almost any material becomes easier to remember if it is included in a narrative (Bruner,
53 1986; Bruner 1990; Crowley, 2018; ElShafie, 2018). There are several factors concerning
54 memory that make narrative a lasting structure, some of them related to the memory process
55 itself and others to the intrinsic characteristics of narratives as a means of expressing
56 information.

57

58 **2. Objective and methodology**

59

60 The objective of this work is to provide a literary review of memory studies regarding
61 memorability of narratives.

62 In previous work (Negrete, 2009; Negrete and Lartigue, 2010; Negrete 2013; Rios and
63 Negrete 2013; Negrete, 2014; Lartigue and Negrete 2016) we provided empirical evidence
64 suggesting that science can be communicated and learned through narratives and that this
65 represents a more enjoyable way of learning compared to traditional texts. In particular, we
66 found that narrative information is retained for lengthier periods than factual information in
67 long-term memory. Our evidence suggested that narratives constitute an important means for
68 science communication to convey information in an accurate, memorable and enjoyable way.
69

70 In this opportunity my aim is to examine what has been reported in literature regarding
71 features of the memory process that contributes to make narratives a memorable device.
72 Although narratives have implications in short memory processes, I will concentrate on long-
73 term memory, the most relevant features for science communication.
74

75 ***3. Narrative representation***

76

77 A dominant model of rationality implies a single type of discourse, one that puts forward
78 hypotheses, reported evidence and systematically inferred conclusions. Stories, in contrast,
79 frequently carry the connotation of falsehood or misrepresentation (Bruner 1986). However,
80 several authors acknowledge that many scientific and mathematical hypotheses emerge as
81 little stories or metaphors. In Howard's view (1991) there is a relationship between science
82 and storytelling. This author considers, for instance, that science represents an example of
83 constructing meaning through storytelling.
84

85 Bruner originally proposed two modes of cognitive functioning: paradigmatic and narrative.
86 Each provides a different way of organising experience, constructing reality and
87 communicating knowledge. They are, at the same time, complementary and irreducible to
88 one another. While paradigmatic knowledge is focused on what is common among items,
89 narrative knowledge focuses on the particular and special characteristics of actions. Human
90 action is the result of the interrelation of previous learning, experience, present and future
91 expectation. While paradigmatic knowledge is carried in individual words that name a
92 concept, narrative knowledge is maintained in stories with plot. Storied memories retain the

93 complexity of the situation in which an action was undertaken, and the emotional and
94 motivational meaning connected with it. The collection of storied experiences provides a
95 basis for understanding new action episodes by means of analogy (Amos and Wisniewski
96 1995).

97

98 Narratives can take different forms. Among the different types of narratives, parables and
99 myths have a particular interest for science communication. Both are aids in understanding
100 difficult concepts. Although the latter may not match our current sense of reality, they can be
101 used in science communication to analyse the values and limits of scientific knowledge
102 (Blades 2001). Also science fiction is of paramount importance in science communication as
103 it is the literary genre most frequently used to represent, explore and play with science.
104 Science can be used as the subject of the narrative, as the basis for the plot, as a background
105 or setting, or even as a metaphor (Willis 1998). Science fiction represents a valuable tool for
106 science education (Gough, 1993 and Appelbaum, 1995) and communication.

107

108 For this work a narrative is a particular type of discourse production, in which events and
109 actions are assembled in an organised unity with the help of an intrigue (Connelly and
110 Clandinin, 1990). Narrative texts answer the question “What happened?” Characters, events
111 and plot exist in a world where time goes by (Amos and Wisniewski, 1995). According to
112 the cognitive model, narratives can be seen as memory enhancing devices (Atkinson and
113 Shiffrin, 1971).

114

115 ***4. Literary review on memory studies***

116

117 **4.1 Cognitive Psychology**

118

119 Cognition is a sub-discipline of psychology that studies how humans perceive, learn,
120 remember and think about information (Sternberg, 2003). Memory is the means by which
121 humans retain and draw upon past experience and use this information in the present (Tulving
122 and Craik, 2000). It is the record of experience that underlies learning. Learning can be
123 defined as a biological mechanism that permits us to face a changing world, i.e., it is a process
124 by which long lasting changes in the behaviour potential take place as a result of experience.

125 In cognitive psychology three main memory operations are distinguished: (i) encoding, (ii)
126 storage, and (iii) retrieval (Baddeley, 2000). Each operation represents a stage in memory
127 processing. Through encoding the individual transforms sensory data into a form of mental
128 representation; through storage, the encoded information is maintained in the memory and
129 through retrieval, it is pulled out for use. Pioneering work by Tulving and Pearlstone (1966),
130 as well as Murdock (1961), suggested that although encoding, storage, and retrieval
131 phenomena are theoretically clearly defined, in practice there is considerable overlap and
132 they are therefore too interdependent to allow for working with each as a separate unit.

133

134 4.2 Long-term Memory

135

136 There are different ways of encoding in long-term memory (LTM) (Stenberg, 2003; Crowley,
137 2018). Most information stored in long-term memory seems to be semantically encoded.
138 There is evidence in early work on the area that other forms of encoding exist in long-term
139 memory, such as visual encoding (Frost, 1972) and acoustic encoding (Nelson and Rothbart,
140 1972), but they play a minor role in comparison to semantic encoding.

141

142 Information from short-term memory is transferred to long-term memory depending on
143 whether the information involves declarative (declarative knowledge refers to recalling facts)
144 or non-declarative memory. Some forms of non-declarative memory like priming and
145 habituation are ephemeral and dissipate rapidly; others such as procedural and conditioning
146 are maintained for longer periods, especially when rehearsed. For declarative knowledge to
147 enter into LTM, two main processes are involved: attention and association (of new
148 information with previous knowledge and also of schemas). The process of integrating new
149 information into stored information is referred as consolidation (Squire, 1986).

150

151 Retention and enhancement of memory during consolidation can be promoted with different
152 meta-memory strategies (Koriat and Goldsmith, 1996; Metcalfe, 2000). These strategies
153 involve a conscious act of reflection by rehearsing and organising (mnemonics) new
154 information destined to stay in long-term memory.

155

156 4.2.1 Long-term Potentiation and Rehearsal

157

158 Every experience leaves a trace in the brain. Every experience is potentially a memory but
159 only some traces seem to become permanently imprinted into brain tissue. Every experience
160 – whether it is a real or perceived event, a thought, a feeling, a fragment of the imagination,
161 or a recollection of a previous experience – involves the activation of a unique neural firing
162 pattern (Maren, 1999). Some events produce strong and long-lasting patterns, which tend to
163 recur continually. When connections are repeatedly activated, they form even more robust
164 links, which bind them into a single unit: long-term potentiation (LTP). Research suggests
165 that memories generated in this way (LTP) can last a lifetime (Barhick & Hall, 1991).

166

167 Rehearsal is perhaps the simplest and most effective strategy that can be used in a memory
168 task. It is an interactive process by which information in short-term memory is continually
169 articulated or ‘refreshed’. Its importance is that it maintains information in short-term
170 memory by ensuring a sufficiently high level of activation and it facilitates the transfer of
171 information to long-term memory and subsequent retrieval by allowing additional time for
172 more elaborate item processing (Dempster, 1981).

173

174 There are three important moments for Long-Term Potentiation (long lasting memory):
175 attention, emotional response and rehearsal. It is interesting noting that a typical oral joke
176 (normally the narrative of something funny happening to somebody) concentrate these tree
177 elements. When someone is going to tell a joke people pay “attention” to the speaker. If the
178 joke is good, they “laugh” (emotional response). Hours later or even the next day, when
179 people remember the joke, they will laugh probably again (rehearsal). That is the way people
180 learn the jokes and reproduce them with friends and colleagues. The joke has a precise
181 structure in order to be funny. It is interesting how we are able to remember such structure
182 with remarkable fidelity so we are able to retell the joke with the precision required to make
183 people laugh. Humorous narratives should be considered as an important resource for science
184 communication as they represent a tool that can induce Long-Term Potentiation by
185 promoting attention, emotional response, and rehearsal (See for example Primo Levi’s
186 narrative in section 4.6).

187 4.2.2 Oblivion

188

189 Oblivion is defined as the decline of performance after learning. It occurs after a certain
190 period. To measure it, researchers observe behaviour after a period in which the learned
191 behaviour has not taken place (retention period).

192

193 It is worth noting that oblivion occurs quickly when we learn lists of unrelated words or
194 unsystematic items. In contrast, if the text is meaningful, it is more likely that we will
195 remember it for longer periods. Previous knowledge (proactive knowledge) can also reduce
196 oblivion (Squire, 1986). Pioneering work by Sir Frederick Bartlett (1932) showed that a story
197 which was difficult to understand was made modern and comprehensible by participants
198 thanks to proactive knowledge. His experiments consisted of presenting an indigenous, North
199 American story called *The War of Ghosts* to a group of participants in Britain. Bartlett found
200 that his participants distorted their recall to provide a story that was more comprehensive to
201 them. Their previous knowledge and expectations had a substantial effect on their
202 recollection. In so doing, Bartlett developed the idea that in memory tasks we use our already
203 existing schemas, which affect the way we recall and learn. In the geosciences context, it has
204 been suggested that Myths (a form of narratives) help in reducing oblivion of geological
205 hazards (flooding, eruptions and earthquakes) and this proactive knowledge has helped to
206 create a culture of prevention in different human groups (Barthes, 2013; Crowley, 2018;
207 Lanza and Negrete, 2007). One interesting example are the myths concerning exploding
208 lakes, as Lake Nyos in Cameroon. As Shanklin (2007) reports, many stories were based on
209 the assumption that lakes are the homes of ancestors and spirits and can be source of death.

210

211 4.3 Emotion and Attention

212

213 Experiencing emotion provides a basis for simple learning and memory (Sternberg, 2003).
214 Emotional learning and memory such as fear conditioning are simple forms of associative
215 learning that supports the acquisition of knowledge; it is acquired rapidly and retained over
216 long periods (Maren, 1999). An effect of emotional stimulation is to direct attention towards
217 the events that provoked it. This attention in turn augments the brain activation associated
218 with the event. Attention is effectively the first stage of laying down memory (Rupp, 1998).

219 Evidence shows that what distinguishes enduring experiences from those that are lost is that
220 when they occurred they either created or coincided with higher than normal levels of
221 emotion (Baddeley, 1997). It is clearly vital for humans to remember events that are
222 emotionally arousing because they are likely to be important ones. They can be used to guide
223 present and future actions. They can be used, for example, to avoid danger (as geological
224 hazards) or to steer us towards a desirable outcome (O'Brien, 2000). Interestingly, the same
225 neuro-chemicals that are released into the bloodstream to put the body on alert also instruct
226 the brain to store a lasting record of the moment. This is the case for acetylcholine,
227 noradrenaline, dopamine and glutamate, which all participate in the creation of links between
228 neurons (Rupp, 1998; Zak 2007).

229

230 Durability of a particular memory seems to depend on how exciting the original experience
231 was (or how excited the individual's brain was when it occurred), how much attention was
232 paid to it and how often it is recalled (Stenberg, 2003). In Lotman's words (1990), 'narratives
233 are a way of expressing ideas and amplifying emotions'. If emotions are generated, there is
234 greater opportunity to concentrate attention and produce long-term potentiation are higher.
235 Also, the possibility to rehearse the emotions is greater, since we tend to repeatedly remember
236 passages that result from a meaningful or emotional experience (Stenberg, 2003).

237

238 4.4 Memory in Context and Knowledge Networks

239

240 According to Gough (1993), context is of paramount importance in order to understand
241 memory process. No subject exists in isolation. Knowledge does not remain neatly
242 compartmentalised into disciplines, but spills over and 'transgresses' boundaries. Everything
243 that happens has a context, not only circumstances and surroundings but also internal states,
244 emotions and physical feelings. If an event is laid down as a memory, some of its context is
245 laid down with it and becomes a hook for remembering (Rupp, 1998). Contextual elements
246 can be valuable aids to recall because when one part of a memory is retrieved, it often 'hooks
247 out' all the others.

248

249 Memories that have similar connotations, forming links based on meaning, are called
250 semantic links. Semantic links act like a cross-referencing system: once we have found a

251 useful piece of information, we can connect it with many more that might also be relevant
252 (Cohen, 1989). Memories that are formed simultaneously are linked by association. These
253 associative links are fundamental to our understanding of the world and often allow us to
254 make predictions based on previous experience (see also section on *Models and Schemas*).
255 Most of the time, semantic and associative links work unconsciously: as soon as one concept
256 is activated in memory, activation spreads automatically to other ideas related through
257 meaning or past experiences.

258

259 A story can be seen as an expressive device that by means of a plot associates characters,
260 situations, places, and information to produce semantic links and a cross-referencing system
261 that can assist in storing and retrieving information in, and from, memory (i.e. scientific
262 knowledge).

263

264 4.5 Human Memory Systems

265

266 According to Tulving (1972), there are six major human memory systems: semantic,
267 episodic, procedural, perceptual, representational and short-term memory. There is
268 reasonable evidence of the existence of the first two types: semantic and episodic memory.
269 With the aid of semantic memory, individuals are able to register and store information about
270 the world in the broadest sense (i.e. not personally experienced) and are capable of retrieving
271 it. Semantic memory allows people to think about things that are absent to the senses at the
272 time (Tulving 1972). Semantic memory is automatic, i.e., it does not require a conscious
273 recollection. It develops earlier in childhood than episodic memory (Tulving 1972).

274

275 4.6 Episodic Memory

276

277 This is the type of memory used to remember events in our lives. Therefore, episodic memory
278 is related to the self-experiences in subjective space and time. An episodic memory consists
279 of memories that come from different areas of the brain that are bound together to create an
280 'episode', rather than a collection of impressions or items of knowledge (Crowley, 2018). In
281 contrast with semantic memory and other kinds of memory systems, in this case the
282 individual is able to transport into the personal past and future at will (Tulving 2000). In

283 times of crisis the individual is able to bring the past to the forefront in order to reinterpret
284 the events of a lifetime.

285

286 Tulving (1966) pointed out that retrieving information from each memory system is
287 associated with distinct memory awareness experiences. According to this author, when an
288 individual uses episodic memory, they are conscious of remembering past experiences,
289 whereas in the case of semantic memory, a person's conceptual knowledge is characterised
290 by memory awareness involving feelings of familiarity or "just knowing".

291

292 Episodic memory is characterised by two aspects of temporal structuring: the location of the
293 event in a specific past time in relation to the present and a temporal sequencing within the
294 episode remembered (Nelson 1972). Both of these aspects rely on a sense of the "extended
295 self" and apparently the role of autobiographic memory is to provide a sense of continuity of
296 the self across time from past to future (Nelson 1972).

297

298 There is a strong link between episodic memory and emotions. The way in which memories
299 are formatted determines their emotional significance and the retrieval pathways to other
300 episodic memories. Earlier experiences tend to be recalled from a third person's point of view
301 (i.e. as an observer), while more recent events are usually recalled from the first person's
302 point of view (i.e. as a participant). Emotions are usually stronger when memories are
303 recalled from a participant's point of view, while the observer's point of view tends to be
304 more objective.

305

306 Narratives offer information that is contextualised in real-life situations (episodes). When an
307 episode in a narrative work evokes emotion in the reader, this incident may become
308 memorable. Narratives (fictional or non-fictional) provide the opportunity to create episodes.
309 If the narrative episode evoke emotions and part of it contain science, then it would be
310 reasonable to expect that information contained in it (included science) will form a lasting
311 memory.

312 The following narrative is a shortened version (performed by the author) of Primo Levi's
313 "Nitrogen" (1985). It provides an example of an episode that includes science and has proved
314 to be a memorable device (Negrete 2009).

315
316 *The client explained to me that he was the owner of a cosmetics factory and he wanted to*
317 *produce a certain kind of lipstick. He needed a few kilos of alloxan. He would pay a good*
318 *price for it, provided I committed myself by contract to supply it only to him. He had read*
319 *that alloxan in contact with the mucous membrane confers on it an extremely permanent red*
320 *colour, because it is not a superimposition, in short a layer of varnish like lipstick, but a true*
321 *and proper dye, as used on wool and cotton. I gulped, and to stay on the safe side replied*
322 *that we would have to see: alloxan is not a common compound nor very well known, I don't*
323 *think my old chemistry textbook devoted more than five lines to it, and at that moment I*
324 *remembered only vaguely that it was a derivative of urea and had some connection with uric*
325 *acid. I dashed to the library at the first opportunity and hastened to refresh my memory as to*
326 *the composition and structure of alloxan.*

327

328 *Alloxan is a hexagonal ring of oxygen, carbon, hydrogen and nitrogen; it is a pretty*
329 *structure! It makes you think of something solid, stable, well linked. In fact it happens also*
330 *in chemistry as in architecture that "beautiful" edifices, that is, symmetrical and simple, are*
331 *also the most sturdy: in short, the same thing happens with molecules as with the cupolas of*
332 *cathedrals or the arches of bridges. Alloxan was known for almost seventy years, but as a*
333 *laboratory curiosity: the preparation method described had a pure academic value, and was*
334 *made from expensive raw materials which (in those years right after the war) it was*
335 *optimistic to hope to find on the market. The sole accessible preparation was the oldest: it*
336 *did not seem too difficult to execute, and consisted in an oxidising demolition of uric acid.*
337 *Just that: uric acid, the stuff connected with gout, intemperant eaters, and stones in the*
338 *bladder. It was a decidedly unusual raw material, but perhaps not as prohibitively expensive*
339 *as the others.*

340

341 *Subsequent research taught me that uric acid, very scarce in the excreta of man and*
342 *mammals, constitutes, however, 50 percent of the excrement of birds and 90 percent of the*

343 *excrement of reptiles. Fine. I phoned the client and told him that it could be done, he just had*
344 *to give me a few days' time: before the month was out I would bring him the first sample of*
345 *alloxan, and give him an idea of the cost and how much of it I could produce each month.*
346 *The fact that alloxan, destined to embellish ladies' lips, would come from the excrement of*
347 *chickens or pythons was a thought which didn't trouble me for a moment. The trade of chemist*
348 *teaches you that matter is matter, neither noble nor vile, infinitely transformable, and its*
349 *proximate origin is of no importance whatsoever. Nitrogen is nitrogen, it passes miraculously*
350 *from the air into plants, from these into animals, and from animals to us; when its function*
351 *in our body is exhausted, we eliminate it, but it still remains nitrogen, aseptic, innocent. We*
352 *-I mean to say we mammals- who in general do not have problems about obtaining water,*
353 *have learned to wedge it into the urea molecule, which is soluble in water, and as urea we*
354 *free ourselves of it; other animals, for whom water is precious (or it was for their distant*
355 *progenitors), have made the ingenious invention of packaging their nitrogen in the form of*
356 *uric acid, which is insoluble in water, and of eliminating it as a solid, with no necessity of*
357 *having recourse to water as a vehicle.*

358

359 *I returned home that evening and informed my wife that the next day I would leave on a*
360 *business trip: that is, I would get on my bike and make a tour of the farms on the outskirts of*
361 *town in search of chicken shit. She did not hesitate, she would come along with me. But she*
362 *warned me not to have too many illusions: finding chicken shit in its pure state would not be*
363 *so easy. In fact it proved quite difficult. First of all, the pollina—that's what the country*
364 *people call it, which we didn't know, nor did we know that, because of its nitrogen content,*
365 *it is highly valued as a fertiliser for truck gardens—the chicken shit is not given away free,*
366 *indeed it is sold at a high price. Secondly, whoever buys it has to go and gather it, crawling*
367 *on all fours into the chicken coops and gleaning all around the threshing floor. And thirdly,*
368 *what you actually collect can be used directly as a fertiliser, but lends itself badly to other*
369 *uses: it is a mixture of dung, earth, stones, chicken feed, feathers, and chicken lice, which*
370 *nest under the chickens' wings. In any event, paying not a little, labouring and dirtying*
371 *ourselves a lot, my undaunted wife and I returned that evening with a kilo of sweated-over*
372 *chicken shit.*

373

374 *The next day I examined the material: there was a lot of gangue, yet something perhaps could
375 be got from it. But simultaneously I had an idea; just at that time, in the Turin subway gallery
376 an exhibition of snakes had opened: Why not go and see it? Snakes are a clean species, they
377 have neither feathers nor lice, and they don't scrabble in the dirt; and besides, a python is
378 quite a bit larger than a chicken. Perhaps their excrement, at 90 percent uric acid, could be
379 obtained in abundance, in sizes not too minute and in conditions of reasonable purity. This
380 time I went alone: my wife is a daughter of Eve and doesn't like snakes. The director and the
381 various workers attached to the exhibition received me with stupefied scorn. Where were my
382 credentials? Where did I come from? Who did I think I was showing up just like that, as if it
383 were the most natural thing, asking for python shit? Out of the question, not even a gram;
384 pythons are frugal, they eat twice a month and vice versa; especially when they don't get
385 much exercise. Their very scanty shit is worth its weight in gold; besides, they—and all
386 exhibitors and owners of snakes—have permanent and exclusive contracts with big
387 pharmaceutical companies. So get out and stop wasting our time. I devoted a day to a coarse
388 sifting of the chicken shit, and another two trying to oxidise the acid contained in it into
389 alloxan. The virtue and patience of ancient chemists must have been superhuman, or perhaps
390 my inexperience with organic preparations was boundless. All I got were foul vapours,
391 boredom, humiliation, and a black and murky liquid which irremediably plugged up the
392 filters and displayed no tendency to crystallise, as the text declared it should. Best to return
393 among the colourless but safe schemes of inorganic chemistry.*

394

395 4.7 Mnemonics

396

397 Before the invention of writing, and long afterwards in many cultures, stories were sung or
398 recited from memory. Rhythm, rhyme and melody were used to provide a framework that
399 aided in their memorisation. Mnemonics are one tool employed to aid recitation from
400 memory. It is defined as the art of improving memory, or a system to aid the memory, i.e.,
401 any strategy that helps people remember. It normally means signals for learning that will later
402 induce the experience to be remembered (Stenberg, 2003).

403

404 According to Lotman (1990), mnemonics can be seen as a way of internal communication
405 that is made up of messages to the self with the purpose of retaining information and includes
406 different sorts of memoranda and reminders. Essentially, such reminder devices add meaning
407 (or personal meaning) to otherwise meaningless, unrelated or arbitrary lists of items for the
408 individual. Mnemonics superimposes an artificial, logical structure (which can be seen as a
409 model) on data, which are not necessarily related. A mnemonic device can be an image
410 (*Alloxan is a hexagonal ring of oxygen, carbon, hydrogen and nitrogen; it is a pretty*
411 *structure! It makes you think of something solid, stable, well linked. In fact it happens also*
412 *in chemistry as in architecture that "beautiful" edifices, that is, symmetrical and simple, are*
413 *also the most sturdy: in short, the same thing happens with molecules as with the cupolas of*
414 *cathedrals or the arches of bridges*), an acronym, a verse, a rhyme (*matter is matter, neither*
415 *noble nor vile*), a peg word, a catch phrase or a story that helps us to remember (Luria, 1986).

416

417 In Yates' view (1992), a feature of Cosmas Rossellius's book (*Thesaurus artificiosae*
418 *memoriae*) are the mnemonic verses given to help memorize orders of places in Hell, or the
419 order of the signs of the zodiac. These verses were written by Dominican inquisitor. These
420 carmina by the Inquisitor constitute an interesting example of the use of artificial memory
421 via mnemonics (Yates, 1992).

422

423 Most of the world's great religions have strong oral traditions in which sacred texts are
424 memorised in their entirety for prayer and to preserve them for posterity. For example, in the
425 *Mishna*, the Jewish written record of the oral law, some literary resources such as metaphors,
426 digressions and poetic images can actually be viewed as mnemonic aids. The *Qur'an* also
427 contains mnemonic aids. This religious book was written both as a work of rhythmic prose
428 and as an epic poem; thus, rhythm, rhyme, and meaning connect every word making it
429 memorable (Luria, 1986).

430

431 Narratives can be seen as mnemonic structures that superimpose an artificial, logical structure
432 on data which is not necessarily related. In this way scientific factual information can be
433 communicated by being embedded in a mnemonic structure (the story) which facilitates
434 future recollection.

435 4.8 Memory Span and Paired Recall Association

436

437 In early work in this area, Dempster (1981) defined memory span as the maximum length of
438 a series of words, images or items that can be reproduced at different stages in time. One of
439 the most practical and important implications of memory study is in education. As short-term
440 memory span is indicative of overall intellectual ability it can be used as a diagnostic tool
441 both for helping educators (and communicators) to adapt teaching (and learning materials)
442 to the specific needs of the learner and for measuring improvements in intellectual ability
443 Dempster (1981). Higher spans are the result of grouping and organisation (Estes, 1974).
444 Organisation, in turn, is one of the key elements of paired recall association.

445

446 Pioneering work by Epstein, Rock and Zuckerman (1960), suggested that when two objects
447 have been perceived or imagined to be interacting, recalling the name of one, in response to
448 the name of the other, is more frequent than when the objects have been perceived or
449 imagined to be side by side. This effect in memory is called paired recall association. As a
450 result of the relationship between two objects, they develop certain properties and
451 interactions. A relation or interaction constitutes a feature that characterises both objects,
452 which enables the individual to retrieve one when the other is provided (Wilton, 1989). An
453 interesting example, of the effectiveness of rhythm and paired recall association as mnemonic
454 aids is clear when we try to remember the lyrics of a song and it suffices to recollect its
455 rhythm in order to do so.

456

457 When words are used as units of meaning, the semantic components of the words are
458 activated (Wilton, 1990). If two words are associated semantically, this assures that common
459 structures are activated in that task. Therefore, in the search for recall, the items to be recalled
460 are found together. On the other hand, when words are used as a collection of symbols
461 without semantic meaning, the common structures are not activated and recall is
462 disorganised.

463

464 Following this line of argument, it would be plausible that stories represent a means of
465 increasing memory span, a way to facilitate retrieval from memory by paired recall

466 association and a powerful device to convey science to the general public in a long lasting
467 way.

468

469 4.9 Models

470

471 According to the classical work by Giere (1979), models can be classified into three
472 categories: scale models that represent reality to a particular scale; analogue models which
473 are useful for understanding other proposed new models; and theoretical models, the most
474 abstract form of a model as they are imaginary and often explained with analogical models.
475 Examples of the latter are the though experiments. A thought experiment is an idealisation
476 or abstraction of existing physical conditions. A thought experiment implies the use of visual
477 imagery abstracted from phenomena that we have actually experienced. This imagery allows
478 intuition, an impression of how things are connected, innovation and the possibility of
479 modelling in the mind. This kind of thinking was used by famous scientists such as Galileo,
480 Einstein, Maxwell, Bohr and Heisenberg.

481

482 In Casti's (1993) view, models can serve three purposes: they can be predictive, explanatory
483 and prescriptive. Prescriptive models give us the opportunity not just to explain or predict
484 but also to manipulate some aspect of the world through 'handles' on the model (*op.cit.*).

485

486 Casti (1993) compares modelling with painting and other artistic disciplines. When an artists
487 paint, they never creates on canvas the exact image of the subject in front of them. Instead
488 they try to capture the essence of meaningful characteristics so that the viewer is able to know
489 more about the object painted than from looking at the real thing. In this sense the object art
490 (paint, sculpture, music, or literature) shows hidden characteristics by using magnifying
491 glasses, special lights, tones, rhythms or narrative resources. Giere's (1979) and Casti's
492 (1993) arguments claim that stories can be seen as narrative models that have the power to
493 explain, the capacity to show scale, an ability to predict the future, to produce analogies and
494 metaphors as well as to theorise.

495 Yuri Lotman (1977) suggested that semiotic systems are models that explain the world in
496 which we live. Amongst all semiotic systems, language is the primary modelling system in

497 which we apprehend the world by means of the model that it provides. Myth, cultural rules,
498 religion, paint, music, literature (narratives) and science are secondary modelling systems.
499 All of them are of equal interest as models to understand and talk about the world.

500

501 In Johnson-Laird's (1983) words: '... stories are represented as mental models in the reader's
502 mind'. To construct a mental model of a story is to imagine what was happening in the
503 narrative. A mental model is a global representation that integrates information from different
504 parts of the story. It is constructed as the story unfolds, and represents the scene, characters,
505 and events, incorporating spatial, temporal, and causal relations (Johnson-Laird, 1983).
506 Mental models have the intuitively appealing feature of treating memory for stories and
507 memory for real-world events as essentially the same (Yates, 1992).

508

509 Narratives can also be seen as secondary modelling systems in which information is
510 represented and organised by means of a plot. This enables us to make sense of reality and
511 prepare information in an organised structure ready for future recall. Stories can be seen as
512 narrative models as they depict the model which has the capacity to explain. For example in
513 the capacity to show scale as in Carbon by Primo Levi, the possibility to show in few pages
514 processes that take millions of years as in *The Crabs Take Over the Island* by Anatoly
515 Dnieprov (1966), an ability to predict the future as in *The Time Machine* by H.G. Wells
516 (1895), or to produce analogies and metaphors as in *Flatland* by Edwin A. Abbot (1884) and
517 to theorise as in Italo Calvino's *Cosmicomics* (1969). Using narratives provide a powerful
518 tool to communicate Science.

519

520 4.10 Story schemas

521

522 One of the earliest studies of memory and narratives was carried out by Frederic Bartlett
523 (1932). Unlike many psychologists of his day, Bartlett recognised the need to study memory
524 retrieval with connected texts rather than studying unconnected strings of digits, words or
525 nonsense syllables. He introduced the idea that schemas, or mental frameworks, built up from
526 prior knowledge and experience, are influential in determining and shaping the memory of a
527 story (see section 3.2.2)

528 During the decade of the 1970s, Bransford and Johnson (1973) challenged the idea that
529 schemas work at retrieval stage. They constructed texts that described a situation in such a
530 way that the reader was unable to understand its meaning unless some clues were provided.
531 The researchers suggested that when new information cannot be related to an appropriate
532 schema, very little is remembered. Other researchers found similar results in comparative
533 experiments of prose retention (see Dooling and Lachman, 1971).

534

535 Today two kinds of schemas are distinguished: event schemas and story schemas. Event
536 schemas consist of knowledge about the subject matter of the story (Cohen, 1989; Christy et
537 al, 2017). For example, the event schemas activated in remembering *The Man Who Mistook*
538 *His Wife for a Hat* by Oliver Sacks (a collection of different narratives about Oliver Sacks'
539 patients) might include knowledge of psychiatric hospitals, admire characters, self-identity,
540 physiology of the brain, sensory ghosts, disembodiment, or autism. Story schemas consist of
541 abstract, content-free knowledge about the structure of a typical story.

542

543 For science communication, one of the advantages of story schemas is that the majority of
544 people have been exposed to them since childhood in such forms as religious instruction,
545 drama, or reading fictional literature. Therefore it represents a widespread and well-
546 established knowledge held by the general public that can be used, without previous
547 instruction, to the benefit of popularisation of science.

548

549 ***Final note***

550

551 It is still necessary to invest considerable amount of effort to investigate about the use of
552 narratives in science communication as it is a rather recent field as well as a promising one.
553 For instance, it is necessary to explore in more depth the adequate characteristics of narrative
554 text for effective science communication (i.e. the use of powerful mnemonic devices). From
555 my perspective, science communication via narratives should follow a series of rules, as it
556 happens with other narrative sub-genera such as the thrillers, horror stories, historic novel,
557 etc. I have named this kind of narratives “SciComm narratives” (Negrete, 2014) and they
558 could be considered as a new narrative sub-genera with their own characteristics and rules.

559 Therefore, it is important to generate more knowledge that enables us to provide a solid
560 theoretical body around narratives for science communication (SciComm narratives).
561

562 **Bibliography**

563

564 Abbot, E.A.: *Flatland: A romance of many dimensions*, Thrift Editions New York, 1992.

565 Baddeley, A.D.: Human memory: theory and practice, Minneapolis: Alyn & Bacon, USA,

566 1997.

567 Baddeley, A.D.: The episodic buffer: A new component of working memory. *Science-Fiction*

568 *Studies*, 4, 417-423, 2000.

569 Bartlett, F.C.: Remembering: a study in experimental and social psychology. New York:

570 Cambridge University Press. USA, 1932.

571 Bahrick, H.P. and Hall, L.K.: Lifetime maintenance of high school mathematics contents.

572 *Journal of Experimental Psychology* 120 (1), 20-33, 1991.

573 Bransford, J.D. and Johnson, M.K.: Considerations of some problems of comprehension, In:

574 Visual information processing, edited by Chase W.G., Cambridge Academic Press,

575 1973.

576 Bruner, J.S. (1986). *Actual minds, possible worlds*. Boston: Harvard University Press.

577 Bruner, J.S. (1990). *Acts of meaning*. Boston: Harvard University Press.

578 Calvino, I.: *Cosmicomics*, Picador, London, 1969.

579 Casti, J.: *Be worlds would*, John Wiley & Sons Inc., New York, 1993.

580 Cohen, G.: *Memory in the real world*, Lawrence Erlbaum Associates Ltd, London, 1989.

581 Connelly F.M. and Clandinin J.D: Stories of Experience and Narrative Inquiry. *Educational*

582 *Research* 9(5):2-14, 1990

583 Crowley K.A. Memorability in Narration: An Overview of Mnemonic Features in Oral and

584 Written Tradition. *Research Journal: Studies about Languages*. No 32, 2018

585 Christy K.R, Jansen J.D, Jensen D, Sarapin S.H, Yale R.N, Weaver J, Pokharel M.

586 Theorizing the Impact of Targeted Narratives: Model Admiration and Narrative

587 Memorability. *Journal of Health Communication*, 22:5, 433-441, 2017.

588 Dempster, F.N.: Memory span: sources of individual and developmental differences.

589 *Psychological Bulletin* 89 (1), 63-100, 1981.

590 Dnieprov, A.: The crabs take over the island. In Magidoff R. (Ed.). *Russian science fiction*,

591 University of London Press, London, 1969.

592 Dornan, C.: Some problems of conceptualizing the issue of 'science and the media, *Critical*

593 *Studies in Mass Communication* 7, 48-49, 1990.

594 Dooling, D.J. and Christiaansen, R.E.: Episodic and semantic aspects of memory for prose,
595 Journal of Experimental Psychology, 3, 428-436, 1977.

596 Dooling, D.J. and Lachman, R.: Effects of comprehension on retention of prose, Journal of
597 Experimental Psychology 88, 216-222, 1971.

598 Durant J. R., Evans, G. A. and Thomas, G.P.: The public understanding of science, Nature
599 340, 11-14, 1989.

600 ElShafie S.J. Making Science Meaniful for Broad Audiences through Stories. Integrative
601 and Comparative Biology, volume 58, number 6, pp 1213-1223, 2018.

602 Epstein, W., Rock, I., and Zuckerman, C.B.: Meaning and familiarity in associative learning.
603 Psychological Monographs: General and Applied 74, 1-22, 1960.

604 Estes, W.K.: Learning theory and intelligence, American Psychologists 29, 740-749, 1974.

605 Frost, N.: Encoding and retrieval in visual memory tasks. Experimental Psychology, 9, 317-
606 326, 1972.

607 Giere, R.: Understanding scientific reasoning, The Dryden Press, Sunders Collage
608 Publishing, New York, 1979.

609 Gough, N.: Laboratories in fiction: science education and popular media, Geelong: Deakin
610 University, Australia, 1993.

611 Hyde, T. and Jenkins, J.J.: Differential effects of incidental tasks on the organization of recall
612 of lists of highly associated words, Journal of Experimental Psychology, 3, 472-
613 481, 1969.

614 Johnson-Laird, P.N.: Mental models, Harvard University Press, USA, 1983.

615 Kintsch, W. and Van Dijk, T.A.: Toward a model of text comprehension and production.
616 Psychological Review, 85(5), 363-394, 1978.

617 Koriat, A. and Goldsmith, M.: Monitoring and control processes in the strategic regulation
618 of memory accuracy. Psychological Review, 103, 490-517, 1996.

619 Lartigue C. Negrete A.: Photocomic Narratives as a Means to Communicate Scientific
620 Information about Use, Treatment and Conservation of Water, Modern
621 Environmental Science and Engineering, 2, 800-808, 2016.

622 Lanza T. y Negrete A.: From myth to earth education and science communication in Piccardi,
623 L. and Masse W.B. *Myth and Geology*. London. Monography published by The
624 Royal Society of Geology of London, 2007.

625 Levi, P.: *The periodic table*, Abacus, London, 1985.

626

627 Lotman, M.Y.: Primary and secondary communication-modeling systems, In: Soviet
628 Semiotics, edited by: Lucid D.P., John Hopkins University Press, USA, 1977.

629 Lotman, M.Y.: Universe of the mind. A semiotic theory of culture, Indiana University Press,
630 USA, 1990.

631 Luria, A.R.: The Mind of the mnemonists, Harvard University Press, USA, 1986.

632 Nelson, T.O. and Rothbart, R.: Acoustic savings for items forgotten from long-term memory,
633 *Journal of Experimental Psychology*, 93, 357-360, 1972.

634 Maren, S.: Long-term potentiation in the amygdala: a mechanisms for emotional learning
635 and memory, *Trends in Neuroscience*, 22, 561-567, 1999.

636 Metcalfe, J.: Metamemory: theory and data, In: *The Oxford handbook of memory*, edited by
637 Tulving E. and Craick M., Oxford University Press, New York, 197-211, 2000.

638 Murdock B.B.: Short-term retention of single paired-associates, *Psychological Reports*,
639 8,280-289, 1961.

640 Negrete A.: So what did you learn from the story? Science communication via narratives,
641 VDM Verlag & Co, Germany, 2009.

642 Negrete, A. and Lartigue C.: The science of telling stories: Evaluating science
643 communication via narratives (RIRC method), *Journal of Media and*
644 *Communication Studies*, 2(4), 98-110, 2010.

645 Negrete A.: Constructing a comic to communicate scientific information about sustainable
646 development and natural resources in Mexico, *Social and Behavioral Sciences*,
647 103, 200 – 209, 2013.

648 Negrete A.: Tell me how much science you can tell: the RIRC method, Lambert Academic
649 Publishing. Germany, 2014.

650 O'Brian, L.: *Learn to remember*, Duncan Baird Publishers, New York, USA, 2000.

651 Rios and Negrete.: The object of art in science: Science communication via art installation,
652 *Journal of Science Communication*, 12(03), 1-18, 2013.

653 Rupp, R.: Committed to memory, Aurum Press Ltd, New York, USA, 1998.

654 Shanklin, E.: Exploding lakes in myth and reality: an African case study. In: Piccardi, L. &
655 Masse W.B. (eds) Myth and Geology. Geological Society, London, Special
656 Publications, 273, 167-17, 2007.

657 Squire, L.R.: Mechanisms of memory, Science, 232(4758), 1612-1619, 1986.

658 Stenberg, R.J. : Cognitive psychology, Thomson Wadsworth, New York, USA, 2003.

659 Tulving, E. and Pearlstone, Z.: Availability versus accessibility of information in memory
660 for words, Journal of Verbal Learning and Verbal Behaviour 5, 381-391, 1966.

661 Tulving, E.: Episodic and semantic memory, In: Organization of memory, edited by Tulving
662 E. and Donalson W., New York Academic Press, New York, USA, 1972.

663 Tulving, E. and Craick, F. I.: The Oxford handbook of memory, Oxford
664 University Press, New York, USA, 2000.

665 Wells, H. G.: *The time machine*, Heinemann, London, 1895.

666 Wilton, R.N.: The structure of memory: evidence concerning the recall of surface and
667 background colour shapes, Quarterly Journal of Experimental Psychology, 41A, 579-
668 598, 1989.

669 Wilton, R.N.: The mediation of paired associate recall by representation of properties
670 ascribed to objects in perception and imagination, Quarterly Journal of Experimental
671 Psychology 42A, 611-634, 1990.

672 Yates, F.A.: The art of memory, London: Pilmico Press, UK, 1992.

673 Zak P.J, Stanton AA, Ahmadi S.: Oxytocin Increases Generosity in Humans. PLoS ONE
674 2(11): e1128, 2007.