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Abstract. Some form of training is often necessary for citizen science projects. While in some citizen science projects, it is 

possible to keep tasks simple so that training requirements are minimal, other projects include more challenging tasks and, 

thus, require more extensive training. Training can be a hurdle to join a project, and therefore most citizen science projects 

prefer to keep training requirements low. However, training may be needed to ensure good data quality. In this study, we 10 

evaluated if an online game that was originally developed for data quality control in a citizen science project, can be used for 

training for that project. More specifically, we investigated whether the CrowdWater game can be used to train new participants 

on how to place the virtual staff gauge in the CrowdWater smartphone app for the collection of water level class data. Within 

this app, the task of placing a virtual staff gauge to start measurements at a new location has proven to be challenging; however, 

this is a crucial task for all subsequent measurements at this location. We analysed the performance of 52 participants in the 15 

placement of the virtual staff gauge before and after playing the online CrowdWater game as a form of training. After playing 

the game, the performance improved for most participants. This suggests that players learned project-related tasks intuitively 

by observing actual gauge placements by other citizen scientists in the game and thus acquired knowledge about how to best 

use the app instinctively. Interestingly, self-assessment was not a good proxy for the participants’ performance or the 

performance increase through the training. These results demonstrate the value of an online game for training. These findings 20 

are useful for the development of training strategies for other citizen science projects because they indicate that gamified 

approaches might provide valuable alternative training methods, particularly when other information materials are not used 

extensively by citizen scientists. 

1 Introduction 

Citizen science projects can be grouped into two different types with regard to data collection and training: either citizen 25 

scientists are engaged in relatively straightforward tasks so that no training is needed, or they perform more advanced tasks 

that require detailed instructions and training (Breuer et al., 2015; Gaddis, 2018; Reges et al., 2016). Training needs depend 

on the tasks within the projects and the project organisers’ perceived need for training. Environment-focused projects, in which 

citizen scientists perform simple tasks and, therefore, receive no prior training are, for example, the global project iNaturalist, 

where citizen scientists take a picture of plants and animals and upload it to a server (Gaddis, 2018; Pimm et al., 2014), 30 

CrowdHydrology, where people passing by a stream, such as hikers read the water level of staff gauges in the USA (Lowry et 

al., 2019), a similar water level study in Kenya (Weeser et al., 2018) or a survey of the occurrence of hail in Switzerland 

(Barras et al., 2019). Projects, in which citizen scientists receive training prior to being able to participate, are for example 

CoCoRaHS, where citizen scientists operate a weather station (Reges et al., 2016), a groundwater study in Canada, where 

volunteers measure the water level in wells (Little et al., 2016), a water quality study in Kenya and Germany (Breuer et al., 35 

2015; Rufino et al., 2018) or a water clarity study in lakes in the USA (Canfield et al., 2016). Bonney et al. (2009, p. 979) write 

“Projects demanding high skill levels from participants can be successfully developed, but they require significant participant 

training and support materials […].”.   
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In practice, there is a range of citizen science projects and many projects can be positioned between these two training types, 

especially when the tasks are relatively easy but data quality can be significantly improved with training. An example is Galaxy 40 

Zoo, which requires participants to classify galaxies in an online test, before they can start to submit data (Lintott et al., 2008). 

Another project is the Malaria Diagnosis Game, which offers a short online tutorial for players (Mavandadi et al., 2012). Some 

projects offer in-person training (Kremen et al., 2011; Krennert et al., 2018; Rufino et al., 2018) but for many projects training 

has to be online because the projects are global (e.g., CrowdWater (Seibert et al., 2019a), CoCoRaHS (Reges et al., 2016), and 

an invasive species training programme (Newman et al., 2010)). Computer-based training can be tricky because the participants 45 

cannot be monitored. However, Starr et al. (2014) found that such computer training methods, e.g. via video, can be just as 

effective as in-person training. Computer-based training, furthermore, requires less time from the project organizers once the 

material has been developed. 

The topic of training and learning in citizen science has received more interest in recent years (Bonney et al., 2016; Cronje et 

al., 2011; Jennett et al., 2016; Phillips et al., 2019). Many citizen science projects that provide training focus more on topic-50 

specific knowledge, often because this is required to complete the task successfully. Examples are the Flying Beauties project 

(Dem et al., 2018), the Neighbourhood Nestwatch Program (Evans et al., 2005), or invasive species projects (Crall et al., 2013; 

Cronje et al., 2011; Jordan et al., 2011), where participants have to learn to identify species before they can participate in the 

project. However, some citizen science projects found that the participants did not increase their factual learning, possibly 

because they were already quite advanced (Overdevest et al., 2004). Contributory projects often emphasise specific skills more 55 

than general topic knowledge. Examples of training for specific skills rather than knowledge are the Canadian groundwater 

study (Little et al., 2016) or the water quality study in Kenya (Rufino et al., 2018). However, “Engagement in contributory 

citizen science might, by way of the methods employed, result in more data reliability but fewer science literacy gains among 

participants.” (Gaddis, 2018). 

A novel approach to training was developed within the CrowdWater project. The CrowdWater project explores opportunities 60 

to collect hydrological data with citizen science approaches. On the one hand, the project develops new approaches to collect 

hydrological data by public participation (Kampf et al., 2018; Seibert et al., 2019b, 2019a) and on the other hand assesses the 

potential value of such data for hydrological modelling (Etter et al., 2018; van Meerveld et al., 2017). In this study, the focus 

is on the collection of water level class observations based on the virtual staff gauge approach (Seibert et al., 2019a). This 

virtual staff gauge approach allows water level observations without physical installations, such as staff gauges (Lowry et al., 65 

2019; Weeser et al., 2018) so that it is scalable and can be used anywhere in the world. However, it is also more challenging 

for the user and potentially prone to mistakes (Seibert et al., 2019a; Strobl et al., 2019). Previously we developed a web-based 

game for quality control of the water level class data (Strobl et al., 2019). Here, we investigate whether playing this game 

might also be a useful preparation for using the virtual staff gauge approach in the CrowdWater app. The objective was to 

evaluate whether playing the game helped participants to understand the virtual staff gauge approach. More specifically, we 70 

addressed the following three specific questions: 

 Are participants better at placing a virtual staff gauge after they have played the game? 

 Are participants better at assessing the suitability of a reference picture after they have played the game? 

 Are participants more confident about their contributions after playing the game and is this confidence related to their 

performance in playing the game? 75 

2 Background information on water level class observations in CrowdWater 

2.1 CrowdWater app 

The CrowdWater smartphone app enables citizen scientists to collect data for several hydrological parameters without 

requiring any physical installations or equipment. The app allows citizen scientists to set up new observation locations and to 
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submit new observations for existing locations. The app uses OpenStreetMap (Goodchild, 2007) and thus allows geo-80 

referencing of observations world-wide. To start water level observations at a new location, the citizen scientist takes a picture 

of a stream, showing the stream bank, a bridge pillar or any other structure that allows identification of the water level. Within 

the app, a virtual staff gauge is inserted onto this picture, which then becomes the reference for all further observations at this 

location (and is therefore called the reference picture). The virtual staff gauge is basically a sticker that is positioned as an 

additional layer onto the initial picture (Fig. 1, left picture), i.e., there is no physical installation at the location. The citizen 85 

scientist can choose from three virtual staff gauges in the app, depending on the water level at the time when the picture is 

taken (low, medium or high; Seibert et al., 2019a). When placing the virtual staff gauge in the reference picture, the citizen 

scientist has to move the staff gauge so that it is level with the current water level and change the size of the staff gauge so that 

it covers the likely range of high and low water levels. When taking the reference picture, it is important that it is perpendicular 

to the stream bank to avoid distortions when comparing the water level with the virtual staff gauge at a later time. Poor staff 90 

gauge placement is one of the most common errors and occurs for about 10 % of the new reference pictures (Seibert et al., 

2019a). The most common errors are making the virtual staff gauge too big (or more rarely too small) to be useful to record 

water level fluctuations, not placing the staff gauge on the opposite river bank or perpendicular to the flow, or choosing the 

wrong staff gauge (Seibert et al., 2019b, 2019a). For further observations (i.e., observations at the same location at a later 

time), the citizen scientist who created the reference picture or any another person who wants to report a water level observation 95 

for this location looks for the structures in the reference picture (e.g., rock, bridge pillar, wall) and estimates the water level 

class by comparing it to the virtual staff gauge in the reference picture (Seibert et al., 2019a). This way, time series of water 

level class data can be obtained at each observation location. 

2.2 CrowdWater game 

In addition to data collection using the CrowdWater smartphone app, citizen scientists can also contribute to the project by 100 

checking the collected water level class data in the web-based CrowdWater game (Strobl et al., 2019). The idea of the 

CrowdWater game is to crowdsource the quality control of the submitted water level class observations by using the pictures 

that were taken and submitted by the citizen scientists in the app. In the game, picture pairs are shown: the reference picture 

with the virtual staff gauge and a picture of the same location at a later time (Fig. 1). The task is to estimate the water level 

class for the picture without the staff gauge (Fig. 1, right picture) by comparing the water level in this picture with the reference 105 

picture, i.e. the picture with the staff gauge (Fig. 1, left picture). Citizen scientists play rounds of twelve picture pairs: eight 

classified pictures that have already been assigned a “correct” value, i.e. the median based on the evaluations of at least 15 

game players and four (so far) unclassified pictures. Currently, the CrowdWater game uses “unstructured crowdsourcing” 

(Silvertown et al., 2015, p. 127), which means that all votes are weighted equally to obtain the correct water level class. The 

order of the pictures is random so that the player does not know whether a picture pair has already been classified or not. For 110 

the classified picture pairs, points are obtained when the “correct” class (6 points) or a neighbouring class (4 points) are 

chosen, and 0 points are given if the selected class is more than one class off from the “correct” value). For unclassified 

pictures, the player receives 3 points regardless of the vote. Players can also report a picture if voting is not possible because 

of, for instance, an unsuitable placement of the staff gauge, poor image quality, or otherwise unsuitable pictures. In this case, 

the player also receives 3 points. The repeated evaluations of the same pictures by multiple players provide quality control of 115 

the incoming water level class data (Strobl et al., 2019). 
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Figure 1: An example of a reference picture with the virtual staff gauge (left) and a picture from an observation at the same location 

at a later time (right). The logs of the streambank can be used as a reference to estimate the water level class. 

2.3 Motivation for this study 120 

When using the CrowdWater app, citizen scientists take a picture of the observation location and upload it, similar to iNaturalist 

(Gaddis, 2018; Pimm et al., 2014) or iSpot (Silvertown et al., 2015). When starting observations at a new location, some 

interpretation is needed, which requires an understanding of the possible range of water levels and determination of the current 

water level. The data collection protocol is, however, simpler than for many projects that do require training, therefore a low-

intensity training seems to be advisable for the CrowdWater project. 125 

As a first step, manuals (https://www.crowdwater.ch/en/crowdwaterapp-en/) and instruction videos 

(https://www.youtube.com/channel/UC088v9paXZyJ9TcRFh7oNYg) were provided online, but in our experience (and based 

on the number of views on YouTube) these are not frequently used. Thus some citizen scientists occasionally still make 

mistakes when submitting data in the CrowdWater app, primarily when starting a new location for observations and placing a 

virtual staff gauge onto the reference picture (Seibert et al., 2019a). Our first approach to handle these mistakes was to 130 

implement a method of quality control, to either filter out or correct erroneous submissions. This quality control method was 

gamified in the CrowdWater game. The CrowdWater game proved successful in improving the quality of the water level data 

submitted through the app (Strobl et al., 2019). Shortly after launching the game, we received anecdotal evidence, such as 

direct feedback from players, that the game also helped them to better place staff gauges and to better estimate water level 

classes. This feedback was confirmed through a short survey sent out to CrowdWater game players for a different study (Strobl 135 

et al., 2019). Roughly a quarter of all players at the time filled in the survey (36 players). When asked if playing the game 

helped them to be more aware of how to place a staff gauge in the app, 79 % agreed. Furthermore, 58 % of all surveyed players 

agreed that the game helped them to better estimate water level classes in the app. The other players indicated no change in 

their abilities, and none of the survey players indicated a deterioration of his or her skills. Essentially, the players are training 

each other in the game as the score per picture pair, which is based on the votes of the other players, shows the new player if 140 

(s)he is correct or not. This is similar to iSpot, where experts train beginners in species recognition (Silvertown et al., 2015). 
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Through the CrowdWater game, players learn which staff gauges are difficult to read and which ones allow easy comparison 

of the water levels (Strobl et al., 2019). 

This motivated us to investigate if the CrowdWater game can be used to train potential citizen scientists to place the virtual 

staff gauge in the CrowdWater app correctly. It is better to train citizen scientists before participation, so that they provide 145 

useful data, than to filter data from untrained citizen scientists afterwards. Filtering wrong data afterwards wastes the time of 

the citizen scientists, and erroneous data can be missed by the filter. In the CrowdWater project, it is particularly important to 

place the virtual staff gauge correctly because all subsequent observations at an observation location are based on this virtual 

staff gauge (i.e., a poorly placed staff gauge will influence all following observations).  

The CrowdWater game is a project-specific training tool, meant to improve the reliability of CrowdWater observations and 150 

does not aim to improve scientific literacy. This is similar to some other citizen science projects, especially contributory 

projects, where data are crowdsourced (Crall et al., 2013). Improving the hydrological knowledge was not necessary in our 

case, as the data can easily be collected without such background knowledge. However, other materials that provide such 

knowledge and a link to an open massive online course are provided on the project website. 

3 Methods 155 

3.1 Training study 

This study aimedto assess if the CrowdWater game can be used to train new participants to place the virtual staff gauge in the 

CrowdWater app correctly. The placement of the staff gauge is the most important metric for this study because this is the 

most crucial task when CrowdWater app users start a new observation location. Rating reference pictures gave additional 

insight into whether participants can recognise well and poorly placed staff gauges, regardless of whether or not they can place 160 

them well themselves. 

The training study consisted of a number of tasks that were executed before and after playing the game. To focus on the 

research questions and to exclude other factors, such as differences between locations, flow conditions or daylight, the study 

was mainly conducted indoors at a computer. For each participant, the experiment took 60-90 minutes. All instructions and 

questions were formulated in English; all participants had a good command of English. The study was conducted between 165 

August and October 2018, apart from a small outdoor task, which was completed by the participants at a later time. The full 

study can be found in the supplementary material: Training study. 

3.1.1 Study tasks 

The six tasks of the training study can be divided into pre-training, training, and post-training tasks (Fig. 2). Each participant 

completed these tasks  in the same order. Pre-training and post-training tasks are only intended to assess the participant’s 170 

performance during this study and are not part of the training for the CrowdWater project. 

Pre-training: 

 First task (staff gauge placement): The study participant looked at 18 stream pictures of the river Glatt 

(supplementary material: Stream pictures). The pictures show the same location but were taken from different angles 

and perspectives. Some were well suited for placing a virtual staff gauge, others were moderately suitable, and some 175 

were not suitable at all. Without receiving any further information, the participant was asked to choose one of the 18 

pictures and to place a virtual staff gauge onto the picture. This was done using an interface on the computer that 

looked similar to that in the CrowdWater app. 

 Second task (rating of reference pictures): The participant looked at 30 different reference pictures (for examples 

see supplementary material: Examples of reference pictures for the rating task). These pictures were chosen from 180 

reference pictures that were uploaded by citizen scientists using the CrowdWater app. The pictures were selected to 
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represent a range of well, moderately, and poorly placed virtual staff gauges. The participant rated each of the 30 

reference pictures as “unsuitable”, “rather unsuitable”, “rather suitable” or “suitable”. 

Training task: 

 Third task (game): The participant played an adapted version of the CrowdWater game. In this version, the 185 

participant estimated the water level class of 50 picture pairs. The regular CrowdWater game only offers twelve 

picture pairs per day, so this extended version corresponds to the training effect of about four rounds of the game. 

The participant did not receive any explanation on the game but could use the help button to obtain more information 

on the game. 

Post-training: 190 

 Fourth task (staff gauge placement): The participant repeated the first task and was asked to place the virtual staff 

gauge for the river Glatt again. The participant received the same 18 pictures but was free to choose another picture 

and to place the virtual staff gauge in a different location, angle or size compared to the first task, or to choose the 

same picture and to place the staff gauge similarly. 

 Fifth task (rating of reference pictures): The participant repeated the second task for a different set of 30 reference 195 

pictures from the app. The distribution of well, moderately and poorly placed virtual staff gauges was roughly the 

same as in the second task. 

 Sixth task (staff gauge placement): The participant used the CrowdWater app outdoors (instead of the online 

interface used for the earlier tasks) to create and upload a reference picture for a stream of their choice. The task was 

meant to be completed within two weeks after completing the first five tasks. However, not every participant 200 

completed the task within this timeframe (at the latest by March 2019), and ten participants did not complete this task 

at all. 

After placing the staff gauge online (first and fourth task) and rating the reference pictures (second and fifth task) participants 

answered several questions to assess the difficulty of the task, their own performance, and their confidence in completing these 

tasks correctly. After the training (third task), participants were asked about the difficulty of the game and whether they thought 205 

the game was fun. 
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Figure 2: Schematic overview of the pre-training, training, and post-training tasks. For each task, the maximum number of points 

and the chosen value for a good performance are given.  210 

3.1.2 Assessment of the different tasks 

The performance of the participants for the different tasks was evaluated based on a score. The scores before and after playing 

the game (i.e., the training) were compared to determine the effect of playing the game. The scoring system was determined 

prior to the start of the study according to assessment criteria that were based on previous experiences with pictures submitted 

through the app and expert judgement (by Strobl and Etter). A separation of the individual scores into “good” and “poor” 215 

was, while somewhat arbitrary, necessary to be able to distinguish the effects the training on the participants who needed it 

most, i.e. those who had a poor performance (i.e., score) before the training. 

For the staff gauge placement tasks (first, fourth and sixth task) points were given for five different placement criteria. The 

maximum placement score was 13. A placement score of 10 or higher was considered good because these reference pictures 

can still be used and would have been left in the CrowdWater database if they were submitted through the app (Fig. 3): 220 

1. Perspective of the picture: The 18 pictures of the river Glatt were taken from different angles and perspectives and 

assigned a score: 0 (unsuitable), 1 (rather unsuitable), 2 (rather suitable) and 3 (suitable). The participant could gain 

more points for the choice of the picture than the other criteria for placing a staff gauge because this is essential for a 

good reference picture. Because every participant fulfilled the outdoor task (sixth task) for a different stream, and the 

participants could choose a location themselves, points could not be assigned a priori. However, the location and the 225 

picture frame were assessed, and a score between 0 and 3 was given based on expert judgement (by Strobl and Etter). 

2. Choice of the staff gauge: Participants could choose from three different virtual staff gauges depending on the water 

level at the time that the picture was taken (low, medium or high). The staff gauge for low flow was considered 



8 

 

correct, as the water level was low at the time that the 18 pictures of the Glatt were taken. The score for the selected 

staff gauge varied between 2 (staff gauge for low flow), 1 (staff gauge for medium flow) and 0 (staff gauge for high 230 

flow). For the outdoor task with the app (sixth task), the situation was assessed based on the water level, and points 

were assigned for the correct assessment of low, medium or high flow by the participant. 

3. Location of the staff gauge: If the staff gauge was placed on the opposite stream bank, as it should be, 2 points were 

given; if the staff gauge was incorrectly placed on the participant’s side of the stream or in the middle of the stream, 

0 points were given. 235 

4. Angle of the staff gauge: The staff gauge should be placed perpendicular to the flow in the stream to avoid contortions 

of the perspective for future water level estimates. If the staff gauge was placed perpendicular to the flow (± 10°), 2 

points were given. If the angle was less than 45°, 1 point was given, and if it was larger than 45°, 0 points were given. 

5. Water level mark: The blue wave of the staff gauge should be located at the water surface in the reference picture. If 

this was the case, 2 points were given, if the blue wave was only slightly off, e.g., due to reflections on the water 240 

surface, 1 point was given, and if the blue wave was not placed on the water surface, 0 points were given. 

Very rarely, two virtual staff gauges were placed in the reference picture (twice before the training (first task), once after the 

training online (fourth task) and once after the training outdoors in the app (sixth task)). We assume that this was most likely 

due to technical difficulties. In these cases, we subtracted 1 point from the participant’s score. This, however, had hardly any 

effect on the results. 245 
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Figure 3: Examples of staff gauge placements: (a) 13 points, i.e., a full score, (b) 10 points, just enough points to still be considered 

suitable for future water level observations, and (c) 3 points, the lowest score obtained throughout the study. 

The rating of the reference pictures (second and fifth task) was evaluated using a rating score. The participant’s choice between 

“unsuitable”, “rather unsuitable”, “rather suitable” and “suitable” was compared to the expert judgement of the reference 250 

pictures (by Strobl and Etter). If the participant picked the same suitability class as the experts, 3 points were given. For each 

class deviation from the expert judgement, one point was subtracted. Thus the maximum score was 90 points (30 reference 

pictures times 3 points per picture). A score of 75, which corresponds to being five times one class and five times two classes 

off, and choosing the correct class 20 times, was still considered good. 

For the training task (fifth task, the game), the participants received points for each picture pair that they compared. Similar to 255 

the actual CrowdWater game, they received 6 points if they chose the “correct” class, i.e. the median of the votes of all 

previous CrowdWater game players, 4 points if they chose a water level class that was one class away, and 0 points if they 

chose a class that was more than one class away from the median. When reporting a picture pair, the participant received 3 

points. The maximum score for the training task was 300 points (a maximum of six points for each of the 50 picture pairs). 

The threshold for a good game score was determined before the study and set at 245 points, which reflects a situation where a 260 
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participant chose the correct class for 35 out of the 50 picture pairs, was one class off five times, more than one class off for 

another five picture pairs, and reported five pictures (we considered five pictures unsuitable and would thus have reported 

them). 

3.1.3 Data analysis 

The scores for the staff gauge placement and rating tasks before and after the training were compared for each participant using 265 

two paired statistical tests: the paired sample t-test for normally distributed data and the Wilcoxon test for data that were not 

normally distributed (Table 1). We used a one-sided test to check whether the difference in the scores before and after the 

training was larger than zero and a two-sided test to determine the significance of the difference in the scores between the 

computer-based and the outdoors/ app-based staff gauge placement (i.e. between the fourth and the sixth task). We used a 

significance level of 0.05 for all tests. We performed the tests for all participants together but also divided the participants 270 

based on their placement score before the training (first task) in order to determine the effect of training for people who initially 

did not install the virtual staff gauge correctly. In order to see whether the game performance was related to the improvement 

in the placement or rating score, we also split the data based on the game score. We used Spearman rank correlation (rs) to 

evaluate the relation between performance (i.e., scores) and the confidence of the participants in their performance, as well as 

between the performance and the stated difficulty and fun rating. 275 

Table 1: The statistical tests were chosen based on whether or not the data were normally distributed according to the Shapiro-Wilk 

test. The tests for the placement score compared scores from before and after the training, as well as after the training and outdoors/ 

app. The test for the rating score compared scores from before and after training. 

Data Data subset Results of the 

Shapiro-Wilk test 

Statistical test of the 

training effect 

Placement score 

All participants Not normally 

distributed 

Wilcoxon test 

Participants with a low 

placement score before 

the training 

Not normally 

distributed 

Wilcoxon test 

Participants with a 

good game score 

Not normally 

distributed 

Wilcoxon test 

Participants with a bad 

game score 

Not normally 

distributed 

Wilcoxon test 

Rating score 

All participants Normally distributed Paired sample t-test 

Participants with a low 

rating score before the 

training 

Not normally 

distributed 

Wilcoxon test 

Participants with a 

good game score 

Not normally 

distributed 

Wilcoxon test 

Participants with a low 

game score 

Normally distributed Paired sample t-test 

 

3.2 Study participants 280 

The participants for this study were recruited through various channels. The University of Zurich offers a database with 

potential study participants in the vicinity of Zurich; people in this database were contacted via email. Additional emails were 

sent to staff and students of the Department of Geography. Friends, colleagues and family helped to recruit participants from 

their social network as well. Local study participants could complete the online part of the study in a computer room at the 
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University of Zurich at specified times; all other participants received the link and completed the study on their own. All 285 

participants completed the first five tasks individually in one session. 

The participants in this study had not previously used the CrowdWater app, nor played the CrowdWater game. In total, 52 

participants completed the first five tasks of the study. Ten of these 52 participants did not complete the outdoor app task, but 

their results were included in the analyses as far as possible. When sending email reminders to complete this sixth task, several 

participants indicated a lack of time or a suitable nearby river. Most participants intended to complete the task, but forgot about 290 

it in the end. Of the 52 participants, 32 (62 %) were female, and 20 (38 %) were male. Age data were collected in age groups: 

6 % of the participants were under 20 years old, 79 % of the participants were 21-40 years old, 8 % were 41-60 years old, and 

8 % were 61-80 years old. The highest education was secondary school for 4 % of the participants, high school for 12 % of 

the participants, university (BSc/MSc or similar) for 79 % of the participants and a PhD for 6 % of the participants. This higher 

education level than the Swiss average and large group of young people (< 40 years) is due to the recruitment of the participants 295 

at the University of Zurich. The level of education of the CrowdWater citizen scientists is unknown, but 89 % of the 36 

CrowdWater game players, who filled in a survey about the game were university educated, and 75 % were under the age of 

40 (Strobl et al., 2019). For a survey about the motivations of CrowdWater app users, as well as citizen scientists from a 

different phenological citizen science project (Nature’s Calendar ZAMG), 66 % of the respondents were university educated, 

and 51 % were under the age of 40 (Etter et al., in review). 300 

4 Results 

4.1 Training results 

Almost two thirds (62 %) of the study participants had a good score (≥ 245 points) for the game. The highest game score was 

274, and the average score was 248. The lowest score (160 points) was an outlier, the second lowest was 211 points (Fig. 4). 

Interestingly the participant with the lowest game score found the game “rather difficult”, but still “a bit of fun”, adding “It 305 

[the game] was quite tricky. I was curious if my answer is right or wrong”. 

  
Figure 4: Boxplot of game score for each study participant. Scores ≥ 245 points are considered good (indicated by the green 

background). The box represents the 25th and 75th percentile, the line the median, the whiskers extend to 1.5 times the interquartile 

range. The individual scores (blue dots) are jittered to improve the visibility of all points.  310 

In the game, participants can report a picture pair if they think that it is not possible to vote on a water level class. The reason 

for reporting a picture pair can be selected from a drop-down menu. The report function was used by 16 participants (31 %). 

It is unknown if the other 36 participants did not find the report function or if they did not think it was necessary to report any 

of the picture pairs. Most of the participants who used the report function, reported between one and six picture pairs, but one 

participant reported ten and another participant reported twelve picture pairs. Out of the 50 picture pairs in the game, 22 were 315 

reported at least once, and one picture pair was reported seven times. When choosing the 50 picture pairs for the game, we 

included five picture pairs that should be reported (Fig. 5). In other words, there were 57 reports in total, 38 of which were not 

valid (i.e., our expert knowledge suggests that the picture pairs could be used to determine the water level class). For some of 

these cases, participants considered a spot unsuitable because they did not realise that they could see the entire picture if they 

clicked on it and therefore thought the reference picture did not have a staff gauge. In another case, they may have been 320 
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confused by a slightly different angle in the picture for the new observation. The most common reason for reporting a picture 

was “The location has changed and the reference image is unrecognizable”. This was indeed a problem with some of the 

picture pairs (Fig. 5). 

  

Figure 5: The number of times that a picture pair was reported and the reason for reporting the picture pair (y-axis) for the 22 325 
picture pairs in the game that were reported at least once (x-axis). The picture pairs that should have been reported based on expert 

assessment prior to the training study are framed with an orange rectangle, the orange triangle indicates the reason based on expert 

assessment. The blue shading represents the number of reports per picture pair (as also indicated by the printed number). 

4.2 Staff gauge placement 

4.2.1 Placement scores before training 330 

The staff gauge placement score before the training (first task) was 10 or higher for 70 % of the participants, i.e., the majority 

of the participants placed the staff gauge in a way that is suitable for further observations. This is a good performance 

considering that the participants did not receive any training yet. Training is more important for the 30 % of participants who 

had a low placement score before the training. The lowest scores were two points (one participant) and three points (two 

participants).  335 

4.2.2 Placement scores after training 

The placement scores generally improved after the training and were statistically significantly better than the scores before the 

training (Wilcoxon test, p < 0.01; Fig. 7). Improvement is especially important for the participants who had a low placement 

score before the training. Therefore, the participants with a low initial score (< 10 points) were assessed separately. For this 

group, the median placement score improved significantly with training as well (Wilcoxon test, p < 0.01). Of the 16 participants 340 

with a poor placement score before the training, ten improved their staff gauge placement sufficiently to make it useful for 

future observations. Participants who performed well before the training, have less possibility to improve the placement, and 

also need to improve their placement score less. However, for two of the participants with a good score before the training, the 

score was poor after the training (Fig. 6 and 7). The placement score improved for participants with a good game score 

(Wilcoxon test, p < 0.01), but not for participants with a low game score (Wilcoxon test, p = 0.11). 345 
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Figure 6: Placement scores before the training (x-axis) and after the training (y-axis). The circle size indicates the number of 

participants with the same scores. The green background indicates participants who already performed well in placing the staff 

gauge before the training (score ≥ 10) and the yellow background indicates participants who performed well after the training (score 

≥ 10). The solid grey line indicates the 1:1 line (i.e., the same score before and after the training), while the dashed lines indicate a 350 
difference of only one point. Points in the upper left triangle indicate an improvement in staff gauge placement after the training. 

The red circles indicate outliers. 
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Figure 7: Box plots of the placement scores before the training (first task), after the training online (fourth task) and outdoors with 

the app (sixth task) for all participants (upper plot), for participants who had a low placement score before the training (middle 355 
plot) and for participants who had a good game score (lower plot). There was a statistically significant difference in the placement 

scores before and after the training for all groups (indicated with the *) and no statistically significant difference between the 

computer based task and the outdoor app task (indicated with “ns“) after the training based on the Wilcoxon test (p < 0.05). The 

green shading indicates a good score. 

Nineteen participants (37 %) picked a different picture for the staff gauge placement after the training. Eight of these 360 

participants chose a stream picture with the same suitability score as the first one, nine selected a better stream picture, and 

two chose a picture that was worse than their original choice. The other 33 participants chose the same stream picture as before. 

The good scores even before the training suggest that most of them also did not need to change the picture. The participants 

who changed the stream picture had a median placement score of 9 before the training and 12 after the training. The participants 

who chose the same stream picture had a median placement score of 11 before the training and 12 after the training. Before 365 

the training, 37 participants chose a reference picture with a score of 3, nine with a score of 2, five with a score of 1 and only 

one participant chose a reference picture with a score of 0. Of the six participants who had a score of 0 or 1 before the training, 

four chose a reference picture with a score of 2 or 3 after the training. For two participants the reference picture score remained 

1.  
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Except for one participant, all participants who performed well in the training task (game score ≥ 245 points) had a good 370 

placement score (≥ 10) after the training. However, the opposite was not the case: participants with a low game score (< 225 

points) sometimes still improved their placement score after the training and all had a good placement score (≥ 10) after the 

training (Fig. 8). The participant with the most substantial improvement in staff gauge placement (from 2 points to 13 points) 

had an excellent game score of 262 points (Fig. 8). Participants who obtained a low score for the staff gauge placement after 

the training all had an average score in the game (228-243), except for one participant with a high game score (248; Fig. 8).  375 

   

Figure 8: Placement scores before and after the training (x-axis) per participant (y-axis); arrows point from before to after training 

scores, dots indicate no change in the placement score and are coloured according to the game score they obtained during the 

training. 

There was no statistically significant difference between placement scores after the training for the online (fourth task) and the 380 

outdoor task with the app (sixth task), neither for all participants (p = 0.50), for participants with a low placement score before 

the training (p = 1.00), nor for participants with a good game score (p = 0.20) or for participants with a bad game score (p = 

0.57, Fig. 7). This indicates that the online task can be used as a proxy for handling the app. 
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4.2.3 Placement score outliers 

When plotting the placement score before the training and after the training, two outliers were visually identified (Fig. 8). Both 385 

participants had a low score before the training and unlike other participants, also a low score after the training. These two 

participants received few points across all assessment criteria for staff gauge placement and also had a below-average game 

score (242 and 228 points). They rated the game as “rather difficult” and “very difficult” and when asked whether they enjoyed 

playing the game stated “neutral” and “It wasn’t fun at all”. Surprisingly both participants were confident that the reference 

picture for the staff gauge placement was “rather suitable”. Both participants changed their impression of the difficulty of the 390 

staff gauge placement (first task) from “very easy” before the training to “rather easy” and “neutral” after the training (fourth 

task). 

4.3 Rating of reference pictures 

4.3.1 Rating scores before the training 

Even though the majority of the participants received a good staff gauge placement score before the training, only 13 % of the 395 

participants had a good rating score (≥ 75) before the training. The highest rating score before the training was 80 and the 

lowest score 54; the average score was 68 points. Only 9 % of the participants had a good score for both staff gauge placement 

and rating before the training. 

4.3.2 Rating scores after the training 

The rating scores improved after the training (Fig. 9 and 10). The median difference in the rating score before and after the 400 

training was statistically significantly larger than zero, for all participants (paired-sample t-test, p < 0.001), for participants 

with a low rating score before the training (Wilcoxon test, p < 0.001), for participants with a good game score (Wilcoxon test, 

p < 0.001), and for participants with a low game score (paired-sample t-test, p = 0.02; Fig. 10). 

 

Figure 9: Rating scores before the training (x-axis) and after the training (y-axis). The circle size indicates the number of participants 405 
with the same scores. The green background indicates participants who already performed well (score ≥ 75) before the training and 

the yellow background indicates participants who performed well after the training (score ≥ 75). The solid grey line indicates the 1:1 

line (i.e., the same score before and after the training), while the dashed lines indicate a difference of only one point. Points in the 

upper left triangle indicate an improvement in the rating score after the training. The red circles indicate outliers. 
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    410 
Figure 10: Boxplots of the rating score before and after the training for all participants (upper plot), for participants who had a low 

rating score before the training (middle plot) and for participants who had a good game score (lower plot). The difference was 

statistically significant for all groups based on the Wilcoxon test (p-value < 0.05, indicated with the *). The green shading indicates 

a good score. 

The rating scores can also be analysed per picture. A single picture can receive between 156 points (all 52 participants chose 415 

the correct suitability class and received 3 points) and 0 points (all participants chose the suitability class that is furthest from 

the correct class). The score was higher for the reference pictures that were considered to be “unsuitable” by the experts before 

the study (median: 139; range 77-152) than for the pictures that the experts rated as “suitable”, “rather suitable” and “rather 

unsuitable” (median: 120-121; Table 2). This indicates that participants were better at identifying the “unsuitable” pictures 

than the more suitable pictures (Table 2).  420 

 

 

 

 

 425 
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Table 2: Number of pictures to be rated before and after the training per suitability category (as determined prior to the study by 

the experts) and the median, average and range in rating scores for the pictures in each category. Each picture can receive a 

maximum rating of 156 points (i.e., all 52 participants chose the correct category and therefore gained three points). 

Suitability 

category 

Number of pictures Rating score (0-156) 

Before 

training 

(second task) 

After 

training 

(fifth task) 

Median Average Range 

Unsuitable 8 8 139 133 77-152 

Rather 

unsuitable 

4 3 121 118 105-128 

Rather suitable 6 6 121 119 96-132 

Suitable 12 8 120 116 66-138 

 

4.3.3 Rating score outliers 430 

Outliers for the rating scores were less obvious than for the placement scores, although there appear to be four outliers (Fig. 9, 

red circles). One participant was also an outlier for the staff gauge placement. The game scores and the assessment of difficulty 

and fun of the game varied for these four participants. The confidence in their own performance when rating the reference 

pictures was mixed before the training, but never lower than “neutral”. After the training, all four participants were confident 

about their performance and found the task either “rather easy” or “very easy”. 435 

4.4 Confidence, difficulty and fun 

4.4.1 Confidence and difficulty in staff gauge placement and rating the reference pictures 

The participants were in general quite confident about their performance, and their confidence increased after the training 

(from 67 % to 98 % of participants for staff gauge placement and from 62 % to 90 % for rating the reference pictures; Fig. 11). 

As shown above, for the outliers in the placement score and rating score, the participants’ confidence in their performance was 440 

not correlated with their actual performance, neither before nor after the training (|rs| ≤ 0.23, p ≥ 0.11).  

Before the training, participants thought that the placement of the staff gauge was a relatively easy task, but the level of 

difficulty was roughly equally split between “difficult”, “neutral” and “easy” for the rating of the reference pictures (Fig. 11, 

lower row). Participants generally considered the tasks easier after the training (72 % of the participants said that the placement 

of the staff gauge was easy before the training vs. 84 % of the participants after the training; 43 % of the participants thought 445 

that rating the reference pictures was easy before the training vs. 71 % after the training). Similar to the results for confidence, 

the assessment of the difficulty of the task was not related to the performance, neither before nor after the training (|rs| ≤ 0.16, 

p ≥ 0.30).  



19 

 

   
Figure 11: Percentage of participants who chose a certain confidence level (first row) and their assessment of the difficulty of the 450 
task (second row) for staff gauge placement (first column) and rating of reference pictures (second column) before the training (x-

axis) and after the training (y-axis). Darker colours indicate that a higher percentage of participants chose these options. 

4.4.2 Difficulty and fun of the game 

Two-thirds of the participants thought that playing the game was fun, but when rating the difficulty they were almost equally 

split between “difficult”, “neutral” and “easy” (Fig. 12). All participants who thought that the game was not fun (21 %), 455 

thought that the game was either difficult or neutral. The level of fun and difficulty was correlated (rs = 0.43, p < 0.01). 

Nonetheless, 11 % of the participants stated that they had fun during the game, but also thought it was difficult. 
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Figure 12: Percentage of participants who chose a certain category for the difficulty (x-axis) and fun (y-axis) of the game. Darker 

colours indicate that more participants chose these options. 460 

4.5 Feedback 

Participants had the option to provide unstructured feedback at the end of the online study (after the fifth task); 15 participants 

decided to do so. Five participants mentioned different issues that had been unclear to them during the study, and four 

commented that they had enjoyed taking part in the study, two specifically mentioned that they thought that the training had 

helped to understand the virtual staff gauge approach, but one participant stated that s(he) thought the training had not helped. 465 

Two participants stated that they thought the study was difficult, and two gave feedback on the technical implementation of 

the study. 

5 Discussion 

5.1 Does the CrowdWater game help participants to place the virtual staff gauge in a suitable way? 

The virtual staff gauge approach was developed as an intuitive approach to collect water level data, so that many citizen 470 

scientists would be able to contribute observations to the CrowdWater project. Such a simple approach is often recommended 

to citizen science project initiators (Aceves-Bueno et al., 2017). Many other citizen science projects, such as CrowdHydrology 

and iNaturalist, also deliberately chose to keep the data collection method easy so that citizen scientists do not require training 

prior to participation (Gaddis, 2018; Lowry et al., 2019). 

When starting a new CrowdWater location for water level class observations, the most difficult task is placing the staff gauge. 475 

This is also the first thing that most citizen scientists who use the CrowdWater app do. All follow-up observations are much 

easier to record in the app. However, the staff gauge placement is an essential task, as all subsequent observations of water 

level classes are based on the reference picture. This is not ideal, as the citizen scientist might not have fully understood the 

concept of the virtual staff gauge yet when making the first observation. Mistakes in the placement of the virtual staff gauge 

occur in about 10 % of the cases. 480 

In this study, most participants (70 %) were already good at placing a staff gauge, even before receiving any training. This 

indicates that the virtual staff gauge is indeed intuitive to use. Training is especially important for the participants who did not 

place the staff gauge well before the training, i.e., citizen scientists who do not intuitively understand how to place the staff 

gauge in the app. Starr et al. (2014) reached a similar conclusion in a study that compared different training methods for plant 

identification and also focused on the beginner group to see the training effects clearly. While the CrowdWater app is 485 

reasonably intuitive, the fact that we do sometimes receive submissions with mistakes (Seibert et al., 2019a) suggests that 

training could be beneficial. The mistakes made when using the app, closely resemble the mistakes made by participants in 

this study and included making the staff gauge too big, not placing the zero line on the water level, or choosing a picture with 
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an angle that distorts the image and hampers further observations at this location. Playing the CrowdWater game can help to 

avoid these mistakes in a playful manner for some of the participants (63 % of the participants who performed poorly prior to 490 

training did well after training). Based on these findings, we suggest that new citizen scientists play the CrowdWater game 

before setting up a new observation location. 

Playing the CrowdWater game was not helpful for all participants; some participants who had a low placement score before 

the training had a low placement score after the training as well. Rinderer et al. (2015) reported a similar case, where some 

groups did improve their skills at classifying soil moisture, but others did not. In the context of this study, this might be due to 495 

the CrowdWater game being an implicit approach to training, instead of an explicit one. We did not provide theory about staff 

gauge placement nor mention the essential criteria of a good virtual staff gauge placement to participants (e.g. angle, size, 

placement on water level) during the study. Most participants intuitively understood this after playing the game because they 

noticed that a poor placement of the staff gauge made the estimation of the water level classes for subsequent observations 

more difficult. The benefit of such an implicit approach is that it is likely more fun than merely providing the theory (which is 500 

given on the CrowdWater homepage and explained in instruction videos). Nonetheless, some participants might have preferred 

explicit, written instructions on what to look for, instead of having to acquire this knowledge themselves. We, therefore, 

recommend that citizen science projects offer theoretical material in addition to a gamified training approach. Newman et al. 

(2010) encourage citizen science project leaders to provide many different training approaches to accommodate different 

learning styles. We do not know if the participants who benefited most from playing the game had previous experiences with 505 

citizen science, online games or smartphones. This could be investigated in a future study and would indicate who might 

require more training or for whom training via a game is most beneficial.  

When rating the reference pictures, participants were better at recognising unsuitable reference pictures, compared to rather 

unsuitable, rather suitable or suitable pictures. The boundaries between the intermediate categories are of course vague and 

somewhat subjective, but it is very encouraging that participants could accurately identify unsuitable reference pictures, as this 510 

means that they are aware of what constitutes a poor placement and are therefore less likely to make these mistakes themselves. 

This is slightly contradictory to the results on the use of the report function during the game. While few participants reported 

pictures, those who did, often overused this opportunity and reported more picture pairs than needed. In practice, it is tricky to 

decide where to set the limit between a suitable and unsuitable picture. For the majority of the reference pictures submitted via 

the CrowdWater app, the staff gauge placement is neither perfect nor useless. Although many staff gauges are not placed 515 

ideally, this does not necessarily mean that they are unusable. Depending on the location, it is often also not possible to place 

the virtual staff gauge perfectly. 

There was no strong correlation between the game score and the improvement after the training. This could partly be due to 

the fact that learning occurs gradually during the game. Early in the game, participants might get few points and improve later 

during the game, leading to an average game score and a learning effect before finishing the training. The number of game 520 

rounds for optimal training is unknown, but the four rounds used here may be a good compromise between showing enough 

different pictures and not taking too much time. Strobl et al. (2019) showed that, on average, players who played more than 

two rounds of the game (24 picture pairs) chose the right water level class more often than players who played fewer rounds. 

Players who played more than four rounds (48 picture pairs) were even more accurate. 

5.2 Advantages and disadvantages of using an online citizen science game for training 525 

The primary goal of the CrowdWater game is quality control of the crowdsourced data by the citizen scientists themselves. 

This method has proven successful in improving the quality of the water level class data (Strobl et al., 2019). The idea to use 

the game also for training developed over time (see Sect. 2.3). By using an online game for this dual purpose (quality control 

and training) less effort from project administrators is needed, compared to developing a separate online training module and 

quality control mechanism. Newman et al. (2010) developed multimedia tutorials for a species identification citizen science 530 
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project and pointed out that they “[…] found the development of multimedia tutorials difficult and time-consuming.” (Newman 

et al., 2010, p. 284). 

The CrowdWater game goes beyond the separation of data quality control into “training before the task” and “checking after 

the task” (Freitag et al., 2016). Instead, training and checking are combined in a continuous loop, where new citizen scientists 

train and more experienced citizen scientists check the data with the same task. This, in turn, converts new citizen scientists 535 

into more experienced ones after only a few rounds of playing the game. This is similar to iSpot, where citizen scientists upload 

a picture of a species and identify the species, which is then checked online by other contributors (Silvertown et al., 2015). 

This leads to the new citizen scientists learning more about species, which will, in turn, make them better at helping other 

citizen scientists in the future. The approach by Bonter and Cooper (2012) for the FeederWatch project also combined data 

quality control with training by sending an automatic message to the contributor when a rare and possibly unlikely entry was 540 

submitted. They state that these “[…] messages may function as training tools by encouraging participants to become more 

knowledgeable […]” (Bonter and Cooper, 2012, p. 306). However, the CrowdWater game is different from these projects in 

that it does not provide factual knowledge (e.g. on streams or hydrology).  

The inclusion of new (and therefore inexperienced) citizen scientists in the quality control process did not negatively influence 

the quality of the data, mainly due to the averaging of votes of several players (Strobl et al., 2019). Of course, this is only the 545 

case if there are enough experienced players, as well. In the project iSpot, the issue of including beginners in the validation 

process was solved through reputation scores, which need to be earned through correct species suggestions (Silvertown et al., 

2015). This could also be a next step for the CrowdWater game, where an accuracy score can be calculated for each citizen 

scientist, which can then be used to weight the water level class votes in the game (Strobl et al., 2019). However, the fact that 

four rounds of playing the game seem sufficient for training suggests that this is not necessary because new game players 550 

quickly turn into experienced ones.   

If a citizen science project wants to develop a training task (as opposed to a quality control methodology that also works as a 

training task), slightly different approaches might be better. In our case, providing the essential criteria for placing a staff gauge 

in a suitable way (e.g. in between the picture pairs) might have been helpful. Similarly, feedback about the correct water level 

class could be given directly after each picture pair, rather than after each round of the game (as it is currently implemented). 555 

However, this would likely disturb the frequent players. Consequently, our primary goal, data quality control, as most game 

players are already aware of these criteria and do not want to be disrupted after every picture when they play the game. 

Therefore, we decided not to add this information to the game. However, additional material, such as tutorial videos, a manual 

including examples of “good” and “bad” staff gauge placements, and introductory app slides are available on the project 

homepage. However, our personal experience is that many citizen scientists do not look at this material before using the app 560 

and are often not aware of it. A potential benefit of the game, compared to the other material, is that citizen scientists are less 

likely to see it as “homework” but more as an entertaining activity and are, therefore, likely to spend more time with the game 

than they would do with other information materials. Encouragingly, participants of this study enjoyed playing the game, 

meaning that they would participate for the fun aspect instead of seeing it as a “learning task”. Consequently, the game can 

be recommended to any potential citizen scientist, without first having to assess their skills, i.e. their need for training. 565 

Additionally, we can recommend new users to play the game instead of discouraging them by explaining that their observations 

are incorrect. 

Citizen science project tasks and therefore also training tasks should always be designed “[…] with the skill of the citizens in 

mind […]” (Aceves-Bueno et al., 2017, p. 287). In this study, a similar number of participants rated the game as easy, neutral 

or difficult. This gives the impression that the difficulty of the game is at a reasonably good level, as it is meant to be engaging 570 

and exciting but at the same time not too challenging to hinder participation. It should be noted that the participants in this 

study looked at 50 picture pairs in a row, to simulate several rounds of the regular CrowdWater game, which only shows 
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twelve picture pairs per day. The CrowdWater game itself is, therefore, likely even more accessible because it is less time 

consuming (and tiring) for citizen scientists. 

In the future, it might be feasible to require participants to play the game before starting a new water level class measurement 575 

location and thus placing a virtual staff gauge in the CrowdWater app. This would be easily verifiable, as the app and game 

accounts are the same. In contrast, it is difficult to assess if citizen scientists have read through the introductory slides on the 

app or the training material that is offered online. Having a compulsory task before all features of the CrowdWater app are 

available might heighten the entry barrier, which most citizen science projects that require many participants try to avoid. 

However, it could also be argued that participants, who chose to complete a training session, might be more committed towards 580 

a project and might, therefore, become more reliable long-term citizen scientists. 

5.3 Does participants’ self-assessment of confidence predict performance? 

In general, participants were more confident about their performance and thought that the task was easier after the training. 

Self-assessment, however, seems to be an unreliable proxy for actual performance and should, therefore, be interpreted 

carefully. Participants with a low score for placing or rating the virtual staff gauges might not have realised what the essential 585 

criteria were (hence the low score) and therefore also did not realise that their staff gauge placement or rating of the reference 

pictures was not ideal. Self-assessment might improve after a while, once participants are more aware of which criteria to look 

for. Such a realisation was seen by a CrowdWater app user, who commented that new observations were relatively difficult 

because the virtual staff gauge in the reference picture that he had created several months earlier, was not placed ideally. This 

indicates that the sequence of activities in the CrowdWater project is not ideal, as volunteers have to start with the most difficult 590 

part, without having been confronted with different staff gauge placement options. It also suggests that after a while, citizen 

scientists learn what criteria to look out for and that training may be useful. 

The predictability of performance based on self-assessment seems to vary for other studies. McDonough et al. (2017) found 

that the self-assessed species identification skills did not correspond to the skills of the citizen scientists. Starr et al. (2014) 

identified a group of citizen scientists who seemed too confident in their abilities but overall believed that the self-assessment 595 

was accurate for the majority of their citizen scientists. Crall et al. (2011) found that citizen scientists’ skills increased with 

their self-assessed comfort level. Further research would be required to determine when self-assessment is a reliable prediction 

of performance. In the meantime, self-assessments should not be fully relied on nor used as a proxy for data quality. 

5.4 Limitations of the study 

The study was standardised by providing a number of pictures of the same stream to the participants to make the rating of their 600 

staff gauge placement comparable and independent of their ability to find a suitable stream. We included a wide range of 

stream pictures, including some unsuitable angles. The staff gauge placement was assessed for only one river, but it is 

encouraging to see that there was no difference in the performance of placing the staff gauge after the training online and 

outdoor, indicating that the online interface and the app were equally intuitive and that participants could also find suitable 

stream sections on their own. The training, therefore, seems to be teaching the necessary skills to the participants. 605 

Participants could choose from the same 18 stream pictures before and after the training, which could potentially lead to a 

confirmation bias, i.e. participants might be more likely to choose the same picture after the training as they did before the 

training. We believe that this effect was negligible, as only two participants with a poor choice of the stream picture before the 

training still had a poor score after the training as well. All other participants either changed the picture, or had already chosen 

a suitable picture before the training. 610 

By singling out participants with a poor performance before the training, the natural variation in the performances might lead 

to an improved performance after the training due to a regression towards the mean. However, the improvements were 

statistically significant when analysed for all participants as well. Further research should investigate how many rounds of the 



24 

 

game would be optimal for training the average citizen scientist and if more rounds  led to better performances for the 

participants who still received low scores after the training, i.e. if the optimal number of rounds could be adapted depending 615 

on the citizen scientist. 

A disproportionately large number of study participants in the study had a university degree (85 %) due to the bias in the social 

network of the authors, recruitment at the university, a tendency of people being more interested in university studies if they 

have been to university themselves, and the study being conducted in English. Many other citizen science projects also report 

higher participation of university-educated citizen scientists (Brossard et al., 2005; Crall et al., 2011; Overdevest et al., 2004), 620 

indicating that the participants of this study might not be that different from the actual citizen scientists in the CrowdWater 

project. 

6 Conclusions 

We investigated the value of an online game as a training tool for the CrowdWater project. This game was initially designed 

for data quality control but turned out to be valuable to improve the participants’ ability to set-up new observation locations as 625 

well. Our results are encouraging beyond the CrowdWater project, and we argue that the overall conclusions that: 1) games 

can provide a suitable approach for training and 2) training and data quality control can be combined, also apply to other citizen 

science projects. Based on our study, the following conclusions about games for training in citizen science projects can be 

made: 

 Citizen science projects should, if possible, be kept intuitive and easy, as this lowers the entry barrier and might 630 

prevent misunderstandings. For the placement of the virtual staff gauge in the CrowdWater project, 70 % of the 

participants of this study already did well before receiving any training. This compares well, with the approximately 

10 % error rate for data submitted through the app (Seibert et al., 2019a). 

 Games facilitate the training of new citizen scientists and people who have already participated for a while. A big 

advantage is that this approach is scalable. Large projects with a lot of beginners are also likely to have a lot of 635 

advanced citizen scientists, and therefore the number of people who can be trained is not limited by the available time 

of the people managing the project. 

 Training through a game might not necessarily be perceived as training by the citizen scientists (in our case, the 

primary goal is data quality control). Potentially this helps to make the training feel less like “homework” before 

starting to collect data. Nearly two-thirds of the participants of this training study said that the game was fun, this 640 

compares well with a survey among early game players of whom 86 % said that they enjoyed playing the game (Strobl 

et al., 2019).  

 While materials such as manuals and tutorials can be useful, gamified approaches provide an enjoyable alternative 

training mechanism for citizen scientists. Citizen scientists might respond differently to various training techniques. 

In our case, we noticed that few citizen scientists read the manual or watched the instruction videos but also that some 645 

individuals might have responded better to a more explicit and less playful training method. We, therefore, 

recommend offering different training options. 
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