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Supplement

S1 Theory

S1.1 Offset correlation

The expected correlation between the kriging predictions, Z̃1(x0), made from data collected on a square grid, of interval ζ,

and predictions, Z̃2(x0), made from a second grid, a translation of the first grid by ζ/2 in both directions is known as the offset

correlation. The correlation of the two kriging predictions can be computed by:

ρZ̃1,Z̃2
=

CZ̃1,Z̃2
(x0)√

σ2
KZ̃1

σ2
KZ̃2

, (S1)

where CZ̃1,Z̃2
(x0) is the covariance Z̃1(x0) and Z̃2(x0). σ2

KZ̃1

and σ2
KZ̃2

are the kriging variances of the predictions from the

first and second grid, respectively.

The offset correlation depends on x0, and is smallest at the location furthest from points on either grid. This minimum offset

correlation is used to evaluate predictions from a grid spacing ζ. As the uncertainty in the map, attributable to sample density,

decreases, the offset correlation increases. The denser the grid the more consistent the maps and the offset correlation will be

1 if the maps are identical and 0 if they are entirely unrelated to each other. The offset correlation is bounded on the interval

[0,1], and ranges from zero (when the maps produced from the two grids are independent of each other (at a coarse spacing)

and approach 1 as the grid becomes finer and the two maps become increasingly similar. Lark and Lapworth (2013) describes

the offset correlation in greater detail.

S1.2 Prediction interval

Some unknown quantity at a location (e.g. soil pH or Segrain) is characterised by a prediction distribution conditional on the

data and statistical model. The kriging prediction is a weighted average of the data

Z̃(x0) =

N∑
i=1

λz(xi), (S2)

where z(xi) is the data and λ are the kriging weights (Webster and Oliver, 2007). The kriging variance, σ2
K is defined as:

σ2
K = E[{Z(x0)− Z̃(x0)}2]. (S3)
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Cross-validation predictions of the statistical model need to be examined by exploratory analysis of the kriging error, ε(x0),

defined as ε(x0) = {z(x0)− Z̃(xo)} to check if the assumption of the normality holds. The kriging predictor is unbiased and

the mean of the errors is zero, and their standard deviation is equal to the kriging standard deviation, σK, from kriging. Based

on this, a 95% prediction interval can be computed as:

[
Z̃(x0)− 1.96σK(x0), Z̃(x0)+ 1.96σK(x0)

]
. (S4)

The prediction distribution may also be obtained on a block support–for example if predictions are required at the scale of a

farm mean or a mean for an administrative region. The same approach holds to the derivation of a prediction interval.

S1.3 Conditional Probability

Consider a situation where the mean value of the variable across the region of interest is above the threshold below which

some intervention is indicated. The value of spatial information in this setting is for identification of those locations where

the intervention is required. In this case the probability that the predicted value of the variable at some location,x0, exceeds

the threshold conditional on the true value’s being below the threshold indicates the risk of a false negative conclusion at that

location. We may expect this probability, which we denote by pe|b to depend on the sampling density over some range of

possible grid spacings. As the grid spacing becomes coarser so the the predicted value tends to the overall mean and pe|b tends

to 1.0.

At some location the true value of a property, z, might or might not indicate that an intervention is required. For purposes of

this argument we assume that an intervention is required if z ≤ zt, a threshold value. We wish to compute the joint probability

that a random location (a) requires the intervention (i.e. z ≤ zt), and (b) that the prediction, Z̃ indicates otherwise, (i.e. Z̃ > zt).

If the kriging error, z−Z̃, were independent of z, then we might consider, assuming normal kriging errors and a known kriging

variance, the probability that Z̃ > zt, given a value Z = z , P
(
Z̃ > zt|z = Z

)
, and then compute its expected value over the

distribution of Z:
−∞∫

−∞

P
(
Z̃ > zt|z = Z

)
f(Z)d Z, (S5)

where f(Z) denotes the PDF of Z. However, this independence does not hold. The kriging predictor, like any smoothing

estimator, is conditionally biased in the sense that the error:

εz = z− Z̃, (S6)

is likely to be positive for large z and negative for small z.

We can write the covariance of z(x0) and εz(x0) at some location x0 as

Cov[z(xo),εz(x0)] = Var[Z(x0)]−λTc, (S7)

2



where λ denotes the vector of nn kriging weights for observations used to make the prediction, and c denotes the vector of

covariances between each of these observations and Z(x0). From Eq (S6)

Z̃ = z− εz ∴ Z̃ > zt ⇔ z− εz > zt ⇔ εz < z− zt

Figure S1 shows a plot of error (positive or negative) against the true value of z. The line is the function

εz = z− zt

Figure S1. Plot of error (positive or negative) against the true value of z.
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Figure S2. Plot of error against the true value of z.

In Figure S2 the light-grey shaded region, unbounded where the line is dashed, corresponds to where

z ≤ zt

and

εz < z− zt,

i.e. to where the intervention is indicated if z is known without error, but Z̃ > zt. The other error condition is that z > zt and

Z̃ ≤ zt. This is represented by the dark grey space in Figure 2.

Table S1. Parameters of the joint distribution of Z and εz .

Mean of Z Population mean of the variable

Variance of Z A priori variance of the variable, i.e. c0 + c1.

Mean of εz 0, as kriging is unbiased

Variance of εz Kriging variance

Covariance of εz and Z Var[Z(x0)]−λTc

we may therefore, compute the joint probabilities that z(x0)≤ zt and εz < z− zt by

P (z(x0)< zt,εz < z(x0)− zt) =

∫ ∫
fz,εz (z,εz)dz dεz, (S8)
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where fz,εz (z,εz) is the joint normal distribution of z(x0) and εz with parameters in Table S1 and the corresponding probability

that z(x0)< zt is

P (z(x0)< zt) =

zt∫
−∞

fz(Z)dz, (S9)

and the desired conditional probability

P (εz < z(x0)− zt|z(x0)< zt) =
P (z(x0)< zt,εz < z(x0)− zt)

P (z(x0)− zt)
. (S10)

As noted above, for brevity we denote the conditional probability defined in Equation (S10) informally by pe|b.

S1.4 Implicit loss function

The loss is a function of the error, if Z̃ is the predicted value and the true value is z, then the error is L(Z̃−z). If the value of z

is equals to 0, then the error is equal to Z̃. The loss function is explained in greater detail by Journel (1984), Goovaerts (1997)

and Lark and Knights (2015). Journel (1984) defined a general linear loss function as:

L(Z̃ − z) = α1|Z̃ − z| if Z̃ <z

= α2|Z̃ − z| if Z̃ ≥ z. (S11)

The parameters α1 and α2 have positive real values. The coefficient α2 is the loss per unit error of underestimation and α1 is

the loss per unit of error of overestimation. The slopes, α1 and α2 define the asymmetry of the loss function. The loss function

can be symmetrical, i.e. penalizing overestimation and underestimation equally; or can be asymmetrical because over-and-

underestimation have different consequences. The asymmetry of the loss function is the ratio of the loss per unit value by

which a quantity is underestimated to the loss per unit value of an overestimation (Lark and Knights, 2015). The asymmetry,

a, is obtained by

a=
α2

α1
, (S12)

i.e., is independent of the absolute value of z. If the loss function depends only on the estimation error, then z can be set

to zero, without loss of generality and the expected loss can be computed as a function of the error variance, and so of the

sample size (Lark and Knights, 2015). Increasing sample size reduces the minimum expected loss in so far as it reduces the

error variance. Therefore, the cost of obtaining n samples can be measured at which the marginal cost of an additional sample

point is equal to the reduction in expected loss that single sample achieves (Goovaerts, 1997). However, it maybe difficult to

define a loss function prior to making decisions about sampling. The losses may not be easy to quantify, e.g. social costs of

failing to intervene, costs of unnecessary interventions, loss of confidence in the decision-making organisation. information

users can be helped to reflect on possible loss functions through the implicit loss function. It is a loss function that makes a
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specified sample size, n, a rational choice, given the marginal costs. That is to say, it is the loss function implied by a choice

of n̄, assuming this is rational. The implicit loss function is conditional on a logistic model (described in section below), that

expresses the marginal costs of the sampling exercise and the conditional distribution of z as a function of effort (Lark and

Knights, 2015) and is obtained by finding ᾱ1 (given asymmetry), such that

L̆(n̄− 1|ᾱ1, ᾱ2,)−L̆(n̄|ᾱ1, ᾱ2,) = C(n̄)−C(n̄− 1), (S13)

where n̄ is the specified number of samples, C(n) is the function that returns the cost of n samples and is a vector of variogram

parameters, so kriging variance is a contributor. The asymmetry can be set at different values, or inferred from other elicited

opinions of the information user group (Lark and Knights, 2015). The expected loss can be minimised at a location given some

prediction distribution of Z̃ for the variable of interest by specifying the value of variable corresponding to a given probability

(P0), i.e.,

Z̃ = F−1(P0). (S14)

Where, F−1 denotes the quantile of the prediction distribution for a probability P0 obtained from

P0 =
α2

α1 +α2
, (S15)

(Journel, 1984). Lark and Knights (2015) suggested that a information user group might consider an implicit loss function

for different n̄ as starting points in the elicitation of a sample size, or compare implicit loss functions for different projects

given different partitions of a total budget between them. No attempt has been made to elicit opinions from information users

on implicit loss function, so we tried it in this study.

S1.4.1 Logistical cost model

In this section we describe how the function defined in Lark and Knights (2015) to return the costs of n samples over an area

A km2, with a sample density of r =N/A samples per km2:

C(n) = ω+vAr+βAtr, (S16)

where ω are the fixed costs, v cost of laboratory analysis per unit, and β the field costs per work day per team. The variable tr

is time taken to sample per km2 at a density of r per km2.

Consider a unit area containing the n sample locations. Following Beardwood et al. (1959), the expected distance to travel

between sample points can be written as

D = k
√
n. (S17)

If we change the area in which the sample points are distributed to some value A, then the distance travelled is scaled by
√
A

and so

DA = k
√
An, (S18)
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and so we may write the distance travelled to sample n points per unit area as

Dn = k

√
n

A
. (S19)

Assuming that the rate of travel is a random variable independent of sample density, we can therefore conclude that the time

taken per unit area to travel between sample points is proportional to the square root of sample density

Tt = τ1

√
n

A
. (S20)

Similarly, assuming that the sampling time is a random variable independent of sample density (time at a sample site), sampling

time per unit area is proportional to sample density

Ts = τ2
n

A
. (S21)

Given these results, we may propose as a model for total sampling time per unit area

To = β1

√
n

A
+β2

n

A
+β0 +T + ε, (S22)

where β0 is a constant to allow for fixed time requirements, T is a random effect of mean zero for between-team variation in

sampling time and ε is a random effect of mean zero for the between-day (residual) variation.

S1.5 Fitting to data

In order to compute the variable tr, we extracted the required data from the geostatical survey conducted in Malawi for the

GeoNutrition project (Gashu et al., 2021). There were 8 teams that collected a total of 1812 sites of soil and crop samples were

visited, this is described in detail by Gashu et al. (2021), Botoman et al. (2022) and Kumssa et al. (2022). For each team-day

from the GeoNutrition survey of Malawi we have extracted the following:

– Number of points sampled.

– Mean time spent travelling per sample, removing the maximum inter-sample interval each day due to ‘lunch break

effect’. The units were in minutes.

– Mean time spent at a sample site. The units were in minutes.

– Length of the sampling day. The units were in minutes. The mean value is 331.

– The total area sampled that day. This is defined as the area of the sample domain which is in the Voronoi cell for the

day’s sample points. Unit were in square kilometres (km2).

These variables are combined. We then compute the following:

– The total time spent sampling per unit area, To in Eq [S22] above, for each team–day.
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Table S2. The anova table for the model

Effect num DF denom DF F-ratio P

Square root of Sampling density 1 294 347.21 <0.0001

Sampling Density 1 294 9.12 0.0027

Table S3. The estimated model coefficients

Coefficient Estimate SE

β0 −0.007 0.51

β1 4.08 4.89

β2 33.6 11.12

– Sample density, n
A , for each team–day.

– The square root of sample density.

We can then fit a linear mixed model for To in which the fixed effects are
√

n
A and n

A and in which team is a random effect.

The anova table for the model is as follows in Table S2

This shows significant effects of both powers of sample density.

The estimated model coefficients are shown in Table S3

The data and fitted model are shown on Figure S3.

S1.6 Worked example

Rumphi district: Area 4,769 km2

*Given total area of Rumphi and assuming a mean sampling day of 331 minutes (Table S4)
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Figure S3. Scatter plot showing the data and fitted model.

Table S4. Worked example for Rumphi district

Sample size Sample Density Predicted sample effort Total sample effort

/km−2 /min km−2 / team–days*

200 0.0419 2.238 35.6

500 0.1048 4.837 76.9

1000 0.2097 8.907 141.6
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S2 Test methods: charts presented to the stakeholders
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Figure S4. A plot of offset correlation and grid spacing for (a) soil pH and (b) Segrain in Malawi.
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Figure S9. Graph showing the probability (Q3), given that an intervention is required at xo that, due to error in prediction, the mapped

variable does not show this. zt is the threshold of interest. (a) is for soil pH and (b) for Segrain concentration.
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Figure S10. Three specified implicit loss functions (Q4) for predictions Se concentration in grain an administrative district in Malawi

presented to the participants.
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S3 Composition of Participants

Figure S11 shows compositions of participants by (a) location, (b) level of mathematical education, (c) level of use of statistics

and (d) professional group

15%

27%

23%

15%

19% Ethiopia

Malawi

United Kingdom

Zambia

Zimbabwe

(a) Location of participants

23%
8%

69%

Certificate/Diploma

Degree/Above

Secondary/High School

(b) Level of mathematical education

31%
15%

54%

Occassional

Perpetual

Regular

(c) Level of use of statistics

69%

31%

Agronpmy/Soil Science

Public Health/ Nutrition

(d) Professional group

Figure S11. Pie charts showing the percentage of participants by (a) location, (b) level of mathematical education, (c) level of use of statistics

and (d) professional group.

S4 Contingency tables

In this section we described how a contingency table can be partitioned to evaluate whether there are differences in the responses

of the participants based on (i) variable used in the test method, (ii) professional group and (iii) by frequency of use of

statistics. In Table S5, we illustrate how the contingency table can be partitioned. The table can be partition into components

corresponding to pooled table and subtables of the full table.
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The full table in Table S5, was partitioned into components corresponding to subtables for soil pH (Subtable 1 in Table S5),

and Segrain concentration (Subtable 2 in Table S5). Then the pooled table completes the partition. The degrees of freedom

and deviances for the three table sum to the degrees of freedom and deviance of the full table. Using the contingency table,

we could conclude if there are differences in responses for the two variables. The full table in can further be partitioned, in a

similar way, by the background of the respondents i.e., professional group and frequency of use of statistics.

The full contingency table for Q1, for offset correlation, is presented as Table S6, in the appendix. The table shows how many

individuals selected the given responses for offset correlation. This table is according to variable used (soil pH vs. Segrain),

professional group and frequency of use of statistics. Table S7 shows how many individuals selected a given response to Q1,

for offset correlation, when columns are pooled within variable used, soil pH or Segrain concentration. Table S8 shows the

pooled counts of the responses for Q1.
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Table S7. A subtable showing how many individuals selected a given response to Q1, for offset correlation, when columns are pooled within

variable used (soil pH vs. Segrain concentration).

Response soil pH Segrain

Offset=0.4 1 3

Offset=0.5 2 1

Offset=0.6 3 4

Offset=0.7 10 6

Offset=0.8 6 9

Offset=0.9 4 3

Table S8. Pooled responses given to the question on offset correlation.

Response Pooled counts

Offset=0.4 4

Offset=0.5 3

Offset=0.6 7

Offset=0.7 16

Offset=0.8 15

Offset=0.9 7
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