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Abstract. Insights from a geoscience communication activ-
ity, verified using preliminary investigations with an artifi-
cial neural network, illustrate that observation of humans’
abilities can help design an effective artificial intelligence or
“AI”. Even given only one set of “training” examples, sur-
vey participants could visually recognize which flow con-
ditions created bedforms (e.g. sand dunes and riverbed rip-
ples) from their shapes, but an interpreter’s geoscience ex-
pertise does not help. Together, these observations were inter-
preted as indicating that a machine learning algorithm might
be trained successfully from limited data, particularly if it is
“helped” by pre-processing bedforms into a simple shape fa-
miliar from childhood play.

1 Introduction

Environmental flows shape the surface they flow over. The
variety of features produced (e.g. sand ripples on a beach),
known as bedforms, reflect and preserve characteristics (e.g.
speed and depth) of the flowing ice, water or air (Venditti,
2012; Bullard et al., 2011; Storrar and Stokes, 2007). The re-
lationships between bedform morphology and flow are con-
tested where observation is extremely difficult, such as under
ice sheets (e.g. Hillier et al., 2018; King et al., 2009), and
best understood for unidirectional water flow over sand in a
laboratory setting, mimicking a river. Even in this idealized
fluvial setting, it is difficult to construct a one-to-one link
between bedform type (e.g. ripples or dunes) and specific
flow conditions (Venditti, 2012; Froehlich, 2020). Illustra-

tively, ripples have a higher aspect ratio (height / length) than
dunes (e.g. Allen, 1968), yet the observational ranges over-
lap (Venditti, 2012), creating uncertainty when attempting to
link morphology with hydraulic conditions. Many variables
related to hydraulics and/or the physics of sediment move-
ment have been proposed to remove the overlap in bedform
stability diagrams such as Fig. 1a. Only recently has a distinct
and non-overlapping zonation of bedform type and flow-
sediment condition been developed using a quantity called
shear velocity (Duran Vinet et al., 2019). Inverting this result
may help realize the aspiration of developing a means to reli-
ably infer flow conditions from bedform morphology, which
is often the only option for inferring past environmental con-
ditions on Earth (Leary and Ganti, 2020) or Mars (Ohata et
al., 2017; Edgett and Lancaster, 1993).

Machine learning or “AI” (artificial intelligence) algo-
rithms, such as artificial neural networks (ANNs), have great
potential in geomorphology (Sofia et al., 2016; Froehlich,
2020; Valentine and Kalnins, 2016; Shumack et al., 2020)
and offer an opportunity to examine this problem, as they do
not assume simple (e.g. linear or one-to-one) relationships
between inputs and predicted variables (Wang et al., 2009;
Faruk, 2010). Unexploited morphological subtleties may ex-
ist by which to categorize bedforms or even to accurately
position them on stability diagrams. This work examines the
scope for using ANNS to distinguish the flow conditions in
which bedforms originated by asking if the ability exists in
non-artificial (human) intelligence for two particulars:
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QI. Is it possible to identify the environment (e.g. river and
desert) of a bedform’s genesis from its shape?

Q2. In the fluvial environment, is it possible to distinguish
flow conditions?

2 Method, data and ethics

An online survey was conducted, initially at the “Non-
Equilibrium Flow and Landform Coupling Workshop” (19
May 2021) and then expanded to participants without
geomorphological expertise using authors’ close contacts
(friends, colleagues and family). For Ql, participants at-
tributed distance-height profiles across 34 individual bed-
forms and 13 bedform sequences (> 3 bedforms) to one of
four environments (fluvial (river), glacial, marine and aeo-
lian (desert)). For Q2, participants ranked three profiles ac-
cording to flow strength (shear velocity), thrice for individ-
ual forms and thrice for bedform sequences. Examples were
provided to isolate visual shape analysis from prior knowl-
edge (Fig. 1b); black-and-white profiles were used to exclude
contextual clues (dataset characteristics and other features in
the landscape), and the order of options (e.g. B, A and C)
was shuffled for each participant to prevent bias. Scale (e.g.
metres) readily distinguishes the environment without using
bedform shape, so it was not given.

Ethical approval was given by the Ethics Review Sub-
Committee at Loughborough University.

Aeolian data are from ASTER (v2; Advanced Spaceborne
Thermal Emission and Reflection Radiometer) across linear
and transverse dune types from the Namib Desert (Bullard
et al., 2011); glacial data are from near Lough Gara in Ire-
land (Hillier and Smith, 2008); fluvial data are from four lab-
oratory experiments (Expts. 1-4) of non-linearly increasing
shear velocity (Unsworth, 2015); and marine data are from
the Irish Sea. Distance—height profiles of these data were cre-
ated, although for the fluvial measurements “time” was used
as a proxy for “distance” (see Fig. 1b). For the survey, rep-
resentative examples of individual bedforms and sequences
were manually selected from these datasets. Pre-processing
to estimate bedforms’ height (H) and width (W) —see Fig. 1c
and d — used the spatial wavelet transform (SWT) algorithm
(Hillier, 2008) and fitting of flat-topped cones (Hillier, 2006).

ANN analysis to follow up the survey used a multi-layered
perceptron (MLP) with four hidden layers with 28, 56, 56
and 28 nodes, each with a ReLU (rectified linear unit) ac-
tivation function. In a baseline analysis, input to predict
the fluvial flow regime (coded by experiment number) was
non-overlapping profile segments 160 s long. After this, to
“help” the ANN bedform, shapes (H and W) were input once
each per analysis, either (i) individually or (ii) as pseudo-
sequences — groups of five bedforms in increasing size or-
der, selected at random without replacement. Weights and
biases were updated using the Adam optimizer of PyTorch
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using a loss function that calculates the mean squared error,
all within a feed-forward back-propagation algorithm.

3 Results

Of the 42 survey participants 25 self-identified as geoscien-
tists, and 16 did not. For Q1, participants correctly identi-
fied the one of four environments (e.g. fluvial and aeolian)
in which individual features originated 32 % of the time,
slightly if significantly (two-tailed ¢ test, p < 0.01) better
than the 25 % expected of guesswork. This rises to 51 % for
bedform sequences. For Q2, participants ranked entirely cor-
rectly three flow strengths (Expts. 1-3) for 46 % of individual
features and 60 % of sequences, much better than the 16 %
expected of guesswork (p <« 0.01).

In none of the questions did geoscientists perform better
than non-geoscientists, with mean percentages of correct an-
swers being indistinguishable (two-tailed ¢ test, p> 0.05).
The overall sentiment is encapsulated by one comment:

I felt this was a geometrical exercise of recognizing
same patterns at different scales. I did not feel that
my experience as an “expert” in bedforms really
made any difference from, say, my son taking the
test.

Several participants commented that their ability to distin-
guish environments might be to do with characteristics of the
data (e.g. smoothness due to data resolution), not bedform
shape. This is a potential pitfall of training an ANN, avoided
here by only analysing the fluvial data.

In the baseline ANN analysis, flow regime was predicted
poorly (r> =0.03). Fitting a simplified geometry (H and
W) to bedforms improves results dramatically, particularly if
pseudo-sequences of bedforms are used (Fig. 1e); individual
forms are weakly predictive (light grey, 2 = 0.11), but sub-
sets of five bedforms are more strongly so (grey, r> = 0.56),
particularly if very small bedforms present in all experi-
ments (H < 0.5 cm) are excluded (dark grey, r? = 0.80). This
is consistent with a visual assessment (Fig. 1d) where indi-
vidual morphologies overlap between experiments, but their
trends, as well as averages over a number of bedforms, are
distinctly different.

4 Discussion

Morphologies from differing environments (e.g. glacial and
fluvial) can be viewed as similar, indicators of analogous pro-
cesses at work (e.g. Shaw, 1983) and modelled with identical
equations (e.g. Fowler, 2002; Duran Vinet et al., 2019) or
statistics (e.g. Hillier et al., 2016; Einstein, 1937). Despite
similarities in appearance, the survey results clearly demon-
strate a level of ability to distinguish flow conditions from
distance-height data of the bed and, unsurprisingly, imply
that an ANN should perform better if utilizing sequences of
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Figure 1. (a) Illustrative bedform stability “phase diagram” for unidirectional fluvial (i.e. river) bedforms, synthesized from multiple sources
(Ohata et al., 2017; Lewis and McConchie, 1994; Southard and Boguchwal, 1990). Main types considered here (i.e. ripples and dunes) are
highlighted. Experiments (Expts.) 1-4 are positioned indicatively. (b) Distance—height profiles (strictly speaking time series) like those given
unannotated to participants, i.e. one each from Expts. 1-3, all scaled to the same dimensions. Horizontal axis is time because in the flume
tank a stationary sensor recorded height as bedforms passed beneath it. (¢) Example of how height (H) and width (W) are determined.
Measured heights (thick black line) are processed using the SWT algorithm to identify bedforms, drawing a line beneath them (thin black
line), which is then approximated as flat-topped cones (grey lines). SWT parameters as in Hillier (2008). (d) Height—width relationships for
the four experiments, with colours as in (a): lines are sliding means with W (Gaussian weights, width 60 s); shaded areas are full ranges
for Expts. 1 and 4; and dots are the means (& 20') of the upper quartile of the data when the small bedforms (i.e. H < 0.5 cm) are excluded.
(e) Comparison of the actual experiment number with out of sample prediction of the experiment number by the ANN using H and W:

individual bedforms (light grey) and subsets of five bedforms with (grey) and excluding (dark grey) small bedforms.

bedforms rather than evaluating individual forms in isolation.
Interestingly, geoscientists’ a priori and contextual knowl-
edge added little, indicating that all required visual cues lie
within the distance—height profiles. Furthermore, one train-
ing dataset sufficed for the survey’s participants, a stark con-
trast to the thousands of datasets required to train ANNs per-
forming pure pattern recognition (e.g. Bishop, 1996), sug-
gesting that participants drew on significant previous learn-
ing (e.g. identification of basic idealized shapes). Together,
these observations prompt the testable idea that an effec-
tive ANN might be efficiently trained by helping it via pre-
processing profiles into simple shape parameters that would
have been readily understood by all participants (H and W).

https://doi.org/10.5194/gc-5-11-2022

Preliminary analysis with an ANN supports our specula-
tions. It demonstrates that an Al with predictive efficacy can
be built using limited data, improved by using bedform se-
quences (Fig. 1e). The increase in predictive skill to 0.80 with
pre-processing help demonstrates, in principle, the utility of
this approach when building an effective Al for geomorphol-
ogy that avoids the crippling need for thousands of datasets
when examples in nature are often limited in number. Specu-
latively, it follows that machine learning techniques might
work well and be trained efficiently wherever non-experts
make good decisions based on images. This study was on
equilibrium conditions but illustrates that ANNs may be key
to linking forms and flow for transitional, non-equilibrium
conditions (e.g. Myrow et al., 2018).
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