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Abstract. The American Geophysical Union (AGU) is an
Earth and space science professional society based in the
United States. Research conducted by AGU members ranges
from the Earth’s deep interior to the outer planets of our solar
system. However, little research exists on the AGU meeting
itself. In this work, we apply network analysis and sciento-
metrics to 17 years of AGU Fall Meetings. We are interested
in the AGU network structure and what its properties can tell
us about how the procedures of the AGU Fall Meeting can
be enhanced to facilitate better scientific communication and
collaboration. We quantify several network properties and il-
lustrate how this type of analysis can enhance meeting plan-
ning and layout. We conclude with practical strategies for the
AGU Program Committee.

1 Introduction

The American Geophysical Union (AGU) is an Earth and
space science professional society based in the United States.
The AGU publishes scientific journals, sponsors meetings,
and supports education and outreach efforts to promote pub-
lic understanding of science. Research conducted by AGU
members ranges from the Earth’s deep interior to the outer
planets of our solar system. Despite the American in its name,
roughly 40 % of the AGU’s membership comes from outside
of the U.S.1

Each year, the AGU hosts a Fall Meeting that draws tens
of thousands of participants. The research presented at these
meetings has been discussed and debated extensively. How-
ever, little research exists on the AGU meeting itself. In this

1Based on data from the AGU’s membership page: https://
membership.agu.org/ (last access: 6 September 2018).

work, we apply network analysis and scientometrics to 17
years of AGU Fall Meetings. We model the AGU Fall Meet-
ings as graphs in which presentation co-authors are con-
nected nodes and analyze these graphs to ascertain their
structure and properties. We are interested in what the struc-
ture and network properties can tell us about the scientomet-
rics of the AGU.

Scientometrics is the science of measuring and analyz-
ing science itself, such as a discipline’s structure, growth,
change, and interrelations (Hood and Wilson, 2001). Vass-
ily Nalimov first coined the term in the 1960s and subse-
quent work has focused on a discipline’s methodologies and
principles as well as individual researchers’ scientific output
(Braun et al., 2006; Hirsch, 2005). Here, we are using “scien-
tometrics” in the general sense of “the science of science” to
understand how science operates and can be improved. Our
work is an exploration of possible approaches to developing
scientometrics within the Earth and space sciences. We are
interested in how science collaboration and networking are
taking place and how the procedures of the AGU Fall Meet-
ing could be enhanced to facilitate better scientific commu-
nication and collaboration. We provide suggestions on how
our work can be operationalized; however, we are currently
not at an operational stage.

2 Dataset, assumptions, and limitations

2.1 Dataset

The data in this study came from the AGU Abstract Browser
(http://abstractsearch.agu.org/about/, last access: 6 Septem-
ber 2018). The Abstract Browser is a publicly available
database of historical abstracts presented at AGU meetings.
This database contains abstracts from meetings other than the
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Table 1. The AGU sections covered in this study.

Abbreviation Full name

A Atmospheric Sciences
AE Atmospheric and Space Electricity
B Biogeosciences
C Cryosphere
DI Study of the Earth’s Deep Interior
ED Education and Human Resources
EP Earth and Planetary Surface Processes
G Geodesy
GC Global Environment Change
GP Geomagnetism and Paleomagnetism
H Hydrology
IN Earth and Space Science Informatics
MR Mineral and Rock Physics
NG Nonlinear Geophysics
NH Natural Hazards
NS Near Surface Geophysics
OS Ocean Sciences
P Planetary Sciences
PA Public Affairs
PP Paleoceanography and Paleoclimatology
S Seismology
SA SPA-Aeronomy
SH SPA-Solar and Heliospheric Physics
SM SPA-Magnetospheric Physics
T Tectonophysics
U Union
V Volcanology, Geochemistry, Petrology

Fall Meeting, such as the Ocean Sciences Meetings; however,
we limited our study to Fall Meetings only. The Fall Meet-
ings are multidisciplinary and provide the largest most com-
prehensive subset of data available. Restricting our study to
Fall Meetings provides the most data and also ensures equal
coverage of the sub-domains covered by the AGU. Our study
includes 17 years of data and covers the Fall Meetings from
2000 to 2017.

The AGU is divided into sections representing the subdis-
ciplines of Earth and space science. As science evolves over
the years, new sections are formed, and older ones can be
merged or dissolved. The sections on which we had data to
perform our analysis are listed in Table 1.

Data were retrieved by programmatically querying the
AGU Abstract Browser’s Linked Open Data interface (http:
//abstractsearch.agu.org/about/lod, 6 September 2018; http:
//abstractsearch.agu.org:8890/sparql, 6 September 2018).
Linked Open Data (LOD, Berners-Lee, 2006; Bizer et al.,
2009) are part of the methods and tools collectively known
as the Semantic Web (Hitzler et al., 2010), which aim to bring
machine-readable meaning to the Web through common data
formats, exchange protocols, and computational reasoning.
The LOD methodology has become a widely adopted data
sharing format and, at last count (Hogan et al., 2011), roughly

30 billion semantic statements were available on the emerg-
ing “Web of Data”. In 2012 the AGU’s historical abstracts
were converted to LOD (Narock et al., 2012; Rozell et al.,
2012), with new meeting data being added each year.

2.2 Limitations and assumptions

The Abstract Browser contains Fall Meeting data such as ses-
sions held, presentations given in each session (including ti-
tle, authors, affiliations, and an abstract), and the AGU sec-
tion in which the session was held. However, the author data
contain only email address, last name, and initials. Moreover,
the same author sometimes has only a first initial, while other
times having first and middle initials. The first author of this
study is a prime example. He appears in the abstract database
as both: T. W. Narock and T. Narock. This raises significant
challenges for autonomously disambiguating people. Further
complicating this issue is the case where authors change in-
stitutions. For example, T. Narock appears with his gradu-
ate school email address and later with the email address
of his affiliation post-graduation. Each author does have an
organizational affiliation provided; however, these data are
also messy and difficult to use for disambiguation. There is
no standard naming convention and the same institution of-
ten appears with multiple names. For example, the NASA
Goddard Space Flight Center is listed as NASA/Goddard,
NASA/GSFC, and NASA/Goddard Space Flight Center. Ide-
ally, authors would be listed with their ORCID (Haak et al.,
2012); however, at present, such data are not available via
any public AGU interface that we are aware of. Lacking the
means to perform a large-scale crowdsourced disambigua-
tion project, we sought other means to disambiguate authors.

We considered email address to be a unique and distin-
guishing feature. Our disambiguation efforts consisted of
finding all cases where email address and last name were
the same but initials only partially matched. For example,
[T. Narock, tom.narock@gsfc.nasa.gov] was considered the
same person as [T. W. Narock, tom.narock@gsfc.nasa.gov].
This approach identified 56 155 matches, which we corrected
in our dataset. However, there are likely many other au-
thors who were not disambiguated. We identified an ad-
ditional 19 896 cases where last names matched, initials
were a partial match, and email addresses differed (e.g.,
[T. W. Narock, tom.narock@gsfc.nasa.gov] and [T. Narock,
tnarock@ndm.edu]). Many of these people are likely the
same (the example given here is known to be the same); how-
ever, in the vast majority of cases we have no means of know-
ing for sure and have chosen not to claim these authors as
identical. Thus, our results have an inherent uncertainty to
them. Specifically, the network graphs we construct from the
AGU data likely have multiple nodes representing the same
person. As such, we consider the network analysis portion
of our study a lower limit. We know that the actual values
for network density and connected components are not lower
than the values reported here, and they would likely be a bit
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higher had we been able to uniquely identify all authors in
our dataset. Despite this limitation, we feel our analysis can
still provide useful insights into the AGU meetings.

All networks are comprised of nodes (also called vertices)
and edges (connections between the nodes). Networks also
come in multiple types ranging from directed to undirected.
Twitter is an example of a directed network. Edges have di-
rectionality in a directed network. For example, Twitter user
A can follow user B; however, user B is not obligated to fol-
low user A back. The edge between users A and B would
have directionality. In an undirected network all edges are
bidirectional by default. This is how “friending” works in
Facebook. Both users (nodes) must agree to the “friendship”
and a link (edge) is created. There are no directed edges al-
lowed in an undirected network.

We model each AGU section as an undirected network
based on co-authorship. If A co-authored a presentation with
B and C, then A, B, and C become nodes in the network with
bidirectional links between each (e.g., A–B, A–C, B–C). We
do not apply any weighting to the edges. If authors A and
B co-authored a presentation at the 2000 Fall Meeting and
then again at the 2010 Fall Meeting, this adds no new in-
formation to the graph. We also consider edges to be eternal
when studying the temporal evolution of the network. For
example, if authors A and B co-authored a presentation at
the 2000 Fall Meeting, these nodes and edges persist in 2017
even if those authors never co-authored another presentation.
We also note that we are measuring co-authorship and not
necessarily collaboration. Our dataset does not contain ref-
erences and acknowledgements used in presentations. These
secondary connections (e.g., citing a paper or acknowledging
a discussion) do not show up as edges in our graphs.

2.3 Open-source software

The analysis software used in this study is freely and pub-
licly available from Narock and Hasnain (2019). The graph
data generated from our software are available in Narock
et al. (2018)

3 Network analysis

3.1 Network density

Network density is defined as the ratio of actual connections
to possible connections. Possible values for network density
range from 0 (no connections at all) to 1 (everyone is con-
nected to everyone else). Figure 1 illustrates the concept of
network density on sample networks. In panel (a) of Fig. 1
there are three nodes and three potential connections. These
three potential connections are realized as all nodes are con-
nected to each other. This is representative of the AGU case
in which A, B, and C have co-authored presentations with
each other, although not necessarily the same presentation.
The network in Fig. 1a has a density of 3/3 = 1.

Figure 1. Example networks and network density.

The network shown in Fig. 1b has the same three poten-
tial connections. However, only two of the nodes are directly
connected. In this example, A has co-authored a presenta-
tion with B and B has co-authored a presentation with C;
however, A has not co-authored a presentation with C. The
network in Fig. 1b has a density of 2/3 = 0.67.

It is unlikely that a real-world network such as the AGU
would have the network density of Fig. 1a. Given the diver-
sity of research topics it is unlikely that the network would be
completely connected. But what are the actual density values
and how do they change over time?

To answer these questions, we first considered each AGU
section to be its own network. Yearly network graphs were
then created for each section using the Abstract Browser
data. Next, we computed the percentage change in network
density for each section. We note that percentage change val-
ues do not always encompass the entire 17 years of the data.
For example, the Earth and Space Science Informatics (IN)
section did not come into existence until 2005. Percentage
change was computed using the first year in which we had
data and 2017. Results are shown in Fig. 2.

Network density decreases for all sections. This tells us
that nodes are being added faster than edges. In practical
terms, the rate at which new people (nodes) are attending
AGU sessions is greater than the rate at which continuing at-
tendees (nodes) are making new connections. Again, these
percentage change values should be considered a lower limit
given our inability to completely disambiguate the authors in
our data.

We expect network density to decrease over time. For den-
sity to remain constant, each new node must also be accom-
panied by an even larger number of new edges. However, we
are surprised by the extent to which density is decreasing.
If a large number of new collaborations were being found at
the AGU, then existing nodes would have new edges at a rate
comparable to new nodes being added. This appears to not
be the case.
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Figure 2. Percentage change in network density.

Figure 3. An illustration of connected components. This graph has
three connected components.

3.2 Connected components

In graph theory, a connected component of an undirected
graph (also referred to as a component) is a subgraph within
the whole graph. Figure 3 shows an example. The network
in the figure is comprised of three connected components.
Although not shown here, an isolated node not connected to
any other nodes in the network is also considered a connected
component. Analysis of connected components within the
AGU networks gives us an indication of how fragmented the
networks are.

Table 2 lists the connected components of the AGU sec-
tion graphs. Specifically, we combined all 17 years of data
for each section and computed the number of connected com-
ponents for the section, the percentage of the total nodes that
make up the largest component, and the percentage of com-
ponents comprised of a single node. Sections in Table 2 are
ordered by decreasing size (number of nodes).

The diversity of research topics likely guarantees that we
are going to have some fragmentation of the network. Not
everyone is working on the same topic and we would expect
to see the number of connected components greater than 1.
Moreover, there is nothing wrong with working by oneself,
and single-node components are to be expected. However,
quantifying these network features helps in the development
of geoscience communication strategies. From Table 2 we
see that the majority of available nodes are part of the largest
connected component. This is true regardless of section size.
The only notable exceptions are Public Affairs and Non-
linear Geophysics. Similarly, we see a very small percent-
age of single-node components. Notable exceptions here are
Public Affairs, Education, and Union. Public Affairs, Educa-
tion, and Union often have contributions from other sections,
which likely accounts for the increased fragmentation and
single-node components, although the Nonlinear Geophysics
result is surprising and in need of further research.

3.3 Multidisciplinary authors

We define a multidisciplinary author as anyone who appears
in the network graph of more than one AGU section. We
looked at all pair-wise comparisons of sections and obtained
the results in Fig. 4, which shows the number of unique au-
thors who have appeared in both sections over the 17 years
of data. We account for differences in section size by normal-
izing the data. The fractional values shown in Fig. 4 are the
number of authors presenting in both sections divided by the
combined sizes of both sections. For instance, there nearly
8000 individuals who presented in both Biogeosciences (B)
and Hydrology (H) during the time period 2000 to 2017. The
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Table 2. Connected components of AGU section graphs (sorted by network size).

Total Number of % of total % of connected
number of connected nodes in the components with

Section nodes components largest component a single node

Hydrology (H) 40 311 2060 88 % 2.0 %
Biogeosciences (B) 32 704 1407 88 % 1.4 %
Atmospheric Sciences (A) 32 224 1139 91 % 1.4 %
Tectonophysics (T) 20 955 814 92 % 1.7 %
Global Environment Change (GC) 20 852 1770 76 % 2.8 %
Volcanology, Geochemistry, Petrology (V) 19 638 889 89 % 1.8 %
Ocean Sciences (OS) 19 202 1235 84 % 2.6 %
Paleoceanography and Paleoclimatology (PP) 15 279 530 91 % 1.1 %
Seismology (S) 14 535 607 91 % 1.9 %
Education and Human Resources (ED) 12 867 1970 60 % 6.5 %
Cryosphere (C) 12 508 508 89 % 1.3 %
Planetary Sciences (P) 12 476 495 90 % 1.6 %
Earth and Space Science Informatics (IN) 10 778 884 75 % 2.6 %
Earth and Planetary Surface Processes (EP) 10 681 883 73 % 1.7 %
Union (U) 10 489 1426 63 % 6.0 %
Natural Hazards (NH) 9611 1125 60 % 2.9 %
Geodesy (G) 8479 393 88 % 1.6 %
SPA-Magnetospheric Physics (SM) 7415 169 95 % 1.3 %
SPA-Solar and Heliospheric Physics (SH) 6584 262 92 % 2.1 %
Geomagnetism and Paleomagnetism (GP) 6009 297 86 % 1.6 %
SPA-Aeronomy (SA) 6003 202 92 % 1.5 %
Mineral and Rock Physics (MR) 5649 481 74 % 1.9 %
Nonlinear Geophysics (NG) 4943 884 43 % 5.0 %
Public Affairs (PA) 4708 1154 12 % 9.4 %
Study of the Earth’s Deep Interior (DI) 4286 267 82 % 1.3 %
Near Surface Geophysics (NS) 4105 501 53 % 1.9 %
Atmospheric and Space Electricity (AE) 2143 108 85 % 1.4 %

B–H entry in Fig. 4 is this 8000 value divided by the total
number of nodes in B and H.

Aside from the related space physics sections of SH and
SM, we do not see a significant amount of presentations
across sections. Authors tend to stay within their primary do-
mains.

3.4 Keyword usage across sections

Authors submitting to the Fall Meeting are asked to tag
their abstracts with keywords from the AGU’s keyword hi-
erarchy (https://publications.agu.org/author-resource-center/
index-terms/, last access: 6 September 2018). We computed
counts of each keyword category for each year of our dataset
across all sections. For instance, Post-secondary Education
and Teaching Methods are sub-topics within the higher-level
Education section of the keyword hierarchy. If the Hydrol-
ogy section had an abstract tagged with Post-secondary Ed-
ucation in 2005 and an abstract tagged with Teaching Meth-
ods in 2005, then this would be counted as two Education
abstracts for the year 2005. We note that abstracts are not
exclusive to one keyword group. Authors are free to self-tag
their abstracts with multiple keywords that may span multi-

ple parts of the keyword hierarchy. This is reflected in our
analysis where the same abstract may contribute to keyword
usage counts in multiple parts of the keyword hierarchy.

For clarity of display, we filtered out keyword groups that
did not reach 100 occurrences during the 17 years in which
we had data. Figures 5 through 8 highlight specific trends in
keyword usage that were observed in our data. The full set of
images showing keyword usage from all keyword categories
is included in the Supplement.

3.4.1 Scenario 1 – two (or more) seemingly unrelated
groups use the same topics

The Earth and Space Science Informatics (IN) section self-
describes (https://essi.agu.org/, last access: 6 September
2018) itself as being “concerned with evolving issues of
data management and analysis, technologies and methodolo-
gies, large-scale computational experimentation and model-
ing, and hardware and software infrastructure needs”. These
concerns span many areas of geoscience and one might ex-
pect IN-related keywords to appear in several computation-
ally intensive domains. This does in fact occur, as evidenced
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Figure 4. Normalized number of occurrences of authors presenting
in more than one section over the years 2000–2017. The fractional
values in each pair-wise comparison are the number of authors pre-
senting in those sections over the time period 2000–2017 divided
by the size of both sections.

in Fig. 5. However, we also see a sharp rise in the Natural
Hazards section’s usage of IN keywords from 2016 to 2017.

Prior to 2016, the Natural Hazard section never had a year
in which they received more than 33 abstracts tagged with
IN keywords (see 2010 through 2013 in Fig. 5). Suddenly, in
2017 they received 270 abstracts tagged with IN keywords.
This is up from four such abstracts in 2016. The bulk of these
270 abstracts in 2017 can be attributed to the Data Assimila-
tion, Integration, and Fusion and Forcasting topics. These
two keyword categories accounted for 87 % of the Natural
Hazard IN-related abstracts in 2017. In this particular case,
it appears to be specific sessions soliciting topics as opposed
to organic emergence of collaborations. The vast majority of
these submissions are to one session, NH23E.

To us, this is indicative of the power of simple scientomet-
ric visualizations. By simply counting keywords we can be-
gin to identify emerging trends, which, as we discuss further
in the next section, can be exploited by meeting and section
leadership to better structure future Fall Meetings. Further,
more detailed analysis, such as the example above, identifies
very effective session planning and emerging science, which
can further be exploited by section leadership and the AGU
Program Committee.

3.4.2 Scenario 2 – increase in volume

The Planetary Science section is the primary user of Astro-
biology keywords as shown in Fig. 6. Usage from 2005 to
2010 was more or less consistent. However, beginning in
2011 a sudden increase in usage is seen that continues to
today. A similar trend is seen with Education keywords in

Fig. 7. In 2015, Public Affairs and Union sessions saw an
increase in abstracts tagged with Education keywords. How-
ever, while Public Affairs usage of Education keywords in-
creased gradually, Union’s usage of the same keywords had
a sudden uptick in 2017.

It may not be surprising that planetary scientists are using
astrobiology terms to tag their abstracts. Meeting attendees
may even have anecdotal evidence of observing this them-
selves. However, had someone been tracking these data in
2012 and 2013 we could have seen this trend emerging. This
information could have gone into meeting planning and po-
tentially led to more physical space at the meeting venue,
joint sessions, increased public outreach, and other initiatives
that could have maximized the dissemination of astrobiology
science.

The related trend, Fig. 7, shows Union sessions having a
sudden uptick in Education-related. A scientometrics- and
data-driven AGU could leverage this information in being
proactive with joint sessions and when/where presentations
are given at the Fall Meeting. We explore this in more detail
in the next section.

3.4.3 Scenario 3 – keyword usage may indicate new
science

The Earth and Space Science Informatics section was formed
in 2005. From 2005 until 2008 this section did not have any
section-specific keywords in the aforementioned AGU key-
word hierarchy. In 2009 IN-specific keywords were intro-
duced. We see this clearly in Fig. 8 where IN’s usage of
General or Miscellaneous keywords decreased significantly
between 2008 and 2011 as IN-specific keywords began to be
used. However, we also see a steady increase in General or
Miscellaneous from 2011 to 2015. Further analysis of this
keyword group reveals steady usage of General or Miscella-
neous: Instruments useful in three or more fields and General
or Miscellaneous: Techniques applicable in three or more
fields during the time period 2011 to 2015. This is suggestive
to us that emerging computational approaches and collabora-
tions are not adequately reflected in the AGU keyword hierar-
chy. This may be more than just the frustration of not finding
an appropriate keyword to tag one’s abstract. New science
may be emerging that could be capitalized on in subsequent
Fall Meetings if we are watching the evolution of the AGU
network. Further exploration of this particular trend would
involve more data than we currently have available and is
outside of our current scope.

4 Scientometrics

AGU Fall Meetings are already very busy. Figure 9 shows the
number of presentations given each year from 2000 to 2017.
We see a steady increase in presentations, with the 2017
Fall Meeting having over 20 000 accepted presentations. Fall
Meeting attendees are already hard-pressed to see everything
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Figure 5. Informatics-themed keyword usage.

Figure 6. Astrobiology keyword usage.

of interest. Using network analysis and having section lead-
ers be proactive prior to a meeting can improve efficiency of
science communication and collaboration.

In regard to network density and connected components,
there is no optimal network clustering value. However, lower
density networks comprised of many loosely connected clus-
ters have been shown to be beneficial (Burt, 2004). In these
networks, everyone does not already know each other, and
multiple clusters lead to new and unique perspectives. By
contrast, when everyone knows everyone else (density = 1),
you are more likely to repeatedly hear the same ideas (Burt,
2004).

In order for information to spread across a network, there
need to be connections between the clusters. We want to
avoid the scenario depicted in Fig. 3 and have at least one
connection between each connected component in an AGU
section. Knowing how many connected components there

are, what the primary research topic of each is (most used
keyword), and whom the components are comprised of can
be beneficial for meeting planners and section leadership. For
the AGU Fall Meeting, session proposal is open to any self-
organized group of up to four AGU members. Authors then
opt to have their submission assigned to a particular session.
We could make this process more proactive by providing
section leadership with connected component data and en-
couraging connections between specific AGU members. This
could range from informal networking events to suggesting
session co-conveners.

4.1 Steps towards optimizing meeting space

One potential means of enhancing the AGU Fall Meeting is
to optimize the physical layout of the event. Historically, oral
presentations are arranged by section, with a section hav-
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Figure 7. Education keyword usage.

Figure 8. General or miscellaneous keyword usage.

ing all of its talks grouped in the same part of the build-
ing. The poster hall is organized alphabetically by section.
What if we leveraged what we are seeing in Figs. 5 and
7 to physically place related sections next to each other?
For example, the Fall Meeting could place Natural Hazards
posters next to Informatics posters to stimulate more discus-
sion. Similarly, Public Affairs and Union sessions could be
physically located near Education sessions and, having iden-
tified the trend in Fig. 7, attendees could be encouraged to
visit related presentations they may not otherwise be aware
of. The AGU has been exploring a related idea via their
Scientific Neighborhoods (https://fallmeeting.agu.org/2018/
scientific-neighborhoods/, last access: 21 January 2019), al-
though, to the best of our knowledge, Scientific Neighbor-
hoods are not based on any network analysis.

Another option is to facilitate navigation of the meeting
via analytics tools built on top of the AGU’s historic meeting

data. A simple example is shown in Fig. 10. This so-called
force-directed graph adds additional information to a stan-
dard network graph. In a force-directed graph the distance
between two nodes is indicative of the strength of the connec-
tion. For instance, in Fig. 10 we show the 10 AGU members
who most used the oceanographic Aerosols keyword. R. We-
ber used this keyword the most over the 17-year period 2000
to 2017. This is indicated in the figure where the R. Weber
node is closest to the central Aerosols node.

We want to be clear that we are not advocating for any sort
of new metric. We do not need to rank researchers nor do
we need to rank the value of their work based on where it is
presented. The journal impact factor does a poor enough job
of this already (Shanahan, 2016). Rather, we are advocating
for tools that would help attendees, especially early-career
and new attendees, identify whom they might want to seek
out based on their research interests. Figures 11 through 13
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Figure 9. Number of presentations given at AGU Fall Meetings each year.

Figure 10. Force-directed graph of oceanographic aerosols key-
word usage.

show an example tool we built for the AGU Open API Chal-
lenge (https://developer.agu.org/projects/, http://apiprojects.
agu.org/project1/, last access: 6 September 2018). After iden-
tifying a researcher, possibly through a visualization like
Fig. 10, the user is guided through finding that researcher
in the historical abstract database (Figs. 11 and 12). The co-
authorship network is then leveraged to identify all AGU
presenters who have co-authored a presentation with the re-
searcher of interest. Figure 13 shows an example for our col-
league Peter Wiebe. For brevity, only the 2018 co-authors
are shown in the figure. The Abstract column in Fig. 13 lists
the year of presentation, the section of the presentation, and
the presentation ID. Each row in the Abstract column is a
clickable link that will take the user to a web page displaying
the presentation title, keywords, and abstract. In this manner,
AGU attendees can follow the network to explore existing
connections amongst nodes and topics. At present, Fall Meet-
ing data will not be available in the Abstract Browser until

Figure 11. Step one of the author search tool.

Figure 12. Step two of the author search tool. The system returns
all matching authors.

after the Fall Meeting concludes. Making these data avail-
able prior to the meeting could lead to new tools and apps.
The AGU does appear headed in this direction with its recent
Open API Challenge.

4.2 Steps toward gender equality

Ford and colleagues (Ford et al., 2018) have identified a gen-
der imbalance in AGU presentations. Women are invited and
assigned oral presentations less often than men. It was found
that male primary conveners allocate invited abstracts and
oral presentations to women less often and below the propor-
tion of women authors. This trend was apparent regardless of
the male primary conveners being students or at more senior
career stages. Ford et al. (2018) also identified that women
elect for poster-only presentations more so than men.

The dataset used in this study has a longer time span than
the one used by Ford et al. (2018). However, our dataset does
not include gender or career stage information. We cannot
add any new information on the gender imbalance discus-
sion. Scientometrics and network analysis may provide tools
to counter this imbalance. However, we are cognizant that
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Figure 13. The result of our author search tool is a web table with links to everyone who has ever co-authored a presentation with the author
of interest. Users can explore the abstracts and network connections of those co-authors – and their co-authors.

more open data may exacerbate the problem by exposing pre-
senters to more opportunities for bias. We highlight these is-
sues here as it is a discussion very much worth having. How-
ever, at this time, we are unable to offer any additional data,
insights, or strategies.

4.3 Steps toward connections to other networks

GeoLink (Narock et al., 2014; Krisnadhi et al., 2015;
Cheatham et al., 2018) is a collection of Linked Open Data
that addresses scholarly discovery and collaboration in the
geosciences. GeoLink leverages the Semantic Web to pub-
lish open data regarding data centers, digital repositories,
libraries, and professional societies. One component of the
GeoLink knowledge graph (Cheatham et al., 2018) is a col-
lection of all National Science Foundation (NSF) funded
projects. Figure 14 (reproduced from Narock and Wimmer,
2017) illustrates what can be done when one network is con-
nected to another. This figure is produced by subsetting the
GeoLink NSF-funded projects by people who have presented
at the AGU. In particular, we are looking at Semantic Web
and semantic integration – a keyword in the Informatics por-
tion of the AGU keyword hierarchy. Combining these two
open datasets allowed us to identify which AGU authors had
active funded grants at the time of their AGU presentation.
We define “active funded grant” as the AGU presentation
date falling between the NSF grant’s start and end dates. We
then looked at the distribution of funding sources. Figure 14

shows the NSF divisions and offices that have funded an
AGU author’s semantic project. This is only one example and
specific to one topic area. However, it illustrates the potential
of open science and cross-organizational network analysis.
We can begin to see how this research topic is funded by
the NSF. In addition, we can start to see the scientific re-
sults (AGU presentations) attributable to each NSF division.
In this regard, AGU scientometrics can go beyond optimiz-
ing Fall Meetings to more general enhancements of open sci-
ence and science communication. Exponential growth is be-
ing observed with the amount of available Linked Open Data
roughly doubling each year. Corporations (e.g., the BBC and
BestBuy), governments (e.g., the US and UK governments),
Wikipedia, social networking sites (e.g., Flickr, Facebook
and Twitter), and various academic communities are all con-
tributing to the movement (Hogan et al., 2011). We encour-
age the AGU to do the same.

5 Conclusions

The AGU is on the cusp of an incredible milestone. Founded
in 1919, the AGU will celebrate its centennial in 2019. There
is a lot we can learn from the past 100 years. Network anal-
ysis, scientometrics, and data science can help us quantify
what we are doing right and identify paths toward improve-
ment. Let us leverage open data and open science to improve
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Figure 14. An example of combining network data. Here, AGU and NSF networks are merged to identify where AGU presenters are
receiving their funding.

how we present our science over the next 100 years. We con-
clude with a summary of recommendations.

Further explore the percentage change in network density.
The AGU is highly invested in collaboration, as evidenced
by Science Neighborhoods, Town Halls, and related events.
If edges are being added at a rate far below the rate of new
nodes, are these collaboration events truly effective?

Explore connected components to identify clusters of re-
search topics and who comprises each cluster. Combina-
tion with other datasets to identify career status (e.g., stu-
dent, early career, senior researcher) can be helpful for the
Program Committee in balancing session chairs. Connected
component analysis may also be helpful in recommending
collaboration amongst components.

The AGU covers a wide cross section of the geosciences.
However, the number of researchers presenting across sec-
tions appears minimal. The analysis of keywords reveals
there are numerous sections interested in the same topics.
The AGU should take steps to enhance presentations across
sections.

Scientometric analysis can reveal emerging trends and hid-
den patterns. We advocate for the release of program data
prior to the Fall Meeting and the development of open tools
that leverage these data. Narock (2018) presented techniques
that can help operationalize this into predictive analytics.

Unique identifiers, such as ORCID and the Global Re-
search Identifier Database, can be used to clearly identify
researchers and organizations.

Technology and open data may help in efforts to battle
gender and minority biases in science presentations. How-
ever, more data and easier access to a researcher’s history
may lead to unintended consequences and additional biases.
Our community needs to continue having discussions in this
area and actively evaluate the role scientometrics might play.

There is currently a strong push for scientific data to ad-
here to the FAIR principles (Wilkinson et al., 2016). We
believe our science communication efforts should adhere to
these principles as well.
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